• Title, Summary, Keyword: metabelian group

Search Result 3, Processing Time 0.022 seconds

ON DECOMPOSABILITY OF FINITE GROUPS

  • Arhrafi, Ali-Reza
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.479-487
    • /
    • 2004
  • Let G be a finite group and N be a normal subgroup of G. We denote by ncc(N) the number of conjugacy classes of N in G and N is called n-decomposable, if ncc(N) = n. Set $K_{G}\;=\;\{ncc(N)$\mid$N{\lhd}G\}$. Let X be a non-empty subset of positive integers. A group G is called X-decomposable, if KG = X. In this paper we characterise the {1, 3, 4}-decomposable finite non-perfect groups. We prove that such a group is isomorphic to Small Group (36, 9), the $9^{th}$ group of order 36 in the small group library of GAP, a metabelian group of order $2^n{2{\frac{n-1}{2}}\;-\;1)$, in which n is odd positive integer and $2{\frac{n-1}{2}}\;-\;1$ is a Mersenne prime or a metabelian group of order $2^n(2{\frac{n}{3}}\;-\;1)$, where 3$\mid$n and $2\frac{n}{3}\;-\;1$ is a Mersenne prime. Moreover, we calculate the set $K_{G}$, for some finite group G.

ON THE STABILITY OF A JENSEN TYPE FUNCTIONAL EQUATION ON GROUPS

  • FAIZIEV VALERH A.;SAHOO PRASANNA K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.757-776
    • /
    • 2005
  • In this paper we establish the stability of a Jensen type functional equation, namely f(xy) - f($xy^{-1}$) = 2f(y), on some classes of groups. We prove that any group A can be embedded into some group G such that the Jensen type functional equation is stable on G. We also prove that the Jensen type functional equation is stable on any metabelian group, GL(n, $\mathbb{C}$), SL(n, $\mathbb{C}$), and T(n, $\mathbb{C}$).

ORDERED GROUPS IN WHICH ALL CONVEX JUMPS ARE CENTRAL

  • Bludov, V.V.;Glass, A.M.W.;Rhemtulla, Akbar H.
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.225-239
    • /
    • 2003
  • (G, <) is an ordered group if'<'is a total order relation on G in which f < g implies that xfy < xgy for all f, g, x, y $\in$ G. We say that (G, <) is centrally ordered if (G, <) is ordered and [G,D] $\subseteq$ C for every convex jump C $\prec$ D in G. Equivalently, if $f^{-1}g f{\leq} g^2$ for all f, g $\in$ G with g > 1. Every order on a torsion-free locally nilpotent group is central. We prove that if every order on every two-generator subgroup of a locally soluble orderable group G is central, then G is locally nilpotent. We also provide an example of a non-nilpotent two-generator metabelian orderable group in which all orders are central.