• Title, Summary, Keyword: multicore processor debugging

Search Result 2, Processing Time 0.024 seconds

Easily Adaptable On-Chip Debug Architecture for Multicore Processors

  • Xu, Jing-Zhe;Park, Hyeongbae;Jung, Seungpyo;Park, Ju Sung
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.301-310
    • /
    • 2013
  • Nowadays, the multicore processor is watched with interest by people all over the world. As the design technology of system on chip has developed, observing and controlling the processor core's internal state has not been easy. Therefore, multicore processor debugging is very difficult and time-consuming. Thus, we need a reliable and efficient debugger to find the bugs. In this paper, we propose an on-chip debug architecture for multicore processors that is easily adaptable and flexible. It is based on the JTAG standard and supports monitoring mode debugging, which is different from run-stop mode debugging. Compared with the debug architecture that supports the run-stop mode debugging, the proposed architecture is easily applied to a debugger and has the advantage of having a desirable gate count and execution cycle. To verify the on-chip debug architecture, it is applied to the debugger of the prototype multicore processor and is tested by interconnecting it with a software debugger based on GDB and configured for the target processor.

On-Chip Debug Architecture for Multicore Processor

  • Park, Hyeong-Bae;Xu, Jing-Zhe;Kim, Kil-Hyun;Park, Ju-Sung
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.44-54
    • /
    • 2012
  • Because of the intrinsic lack of internal-system observability and controllability in highly integrated multicore processors, very restricted access is allowed for the debugging of erroneous chip behavior. Therefore, the building of an efficient debug function is an important consideration in the design of multicore processors. In this paper, we propose a flexible on-chip debug architecture that embeds a special logic supporting the debug functionality in the multicore processor. It is designed to support run-stop-type debug functions that can halt and control the execution of the multicore processor at breakpoint events and inspect the possible causes of any errors. The debug architecture consists of the following three functional components: the core debug support block, the multicore debug support block, and the debug interface and control block. By embedding this debug infrastructure, the embedded processor cores within the multicore processor can be debugged simultaneously as well as independently. The debug control is performed by employing a JTAG-based scanning operation. We apply this on-chip debug architecture to build a debugger for a prototype multicore processor and demonstrate the validity and scalability of our approach.