• Title, Summary, Keyword: nitric oxide (NO)

Search Result 2,553, Processing Time 0.049 seconds

Inhibition of Nitric Oxide Production by Ethyl Digallates Isolated from Galla Rhois in RAW 264.7 Macrophages

  • Park, Pil-Hoon;Hur, Jin;Lee, Dong-Sung;Kim, Youn-Chul;Jeong, Gil-Saeng;Sohn, Dong-Hwan
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.419-424
    • /
    • 2011
  • Galla Rhois and its components are known to possess anti-infl ammatory properties. In the present study, we prepared equilibrium mixture of ethyl m-digallate and ethyl p-digallate isomers (EDG) from Galla Rhois and examined its effect on nitric oxide (NO) production in murine macrophage cell line. Treatment of RAW264.7 macrophages with EDG signifi cantly inhibited NO production and inducible nitric oxide synthase (iNOS) expression stimulated by LPS, as assessed by Western blot and quantitative RT-PCR analyses. We also demonstrated that EDG treatment led to an increase in heme oxygenase-1 (HO-1) mRNA and protein expression. EDG treatment also enhanced expression level of nuclear factor-erythroid 2-related factor 2 (Nrf2) in nucleus, which is critical for transcriptional induction of HO-1. Treatment with SnPP (tin protoporphyrin IX), a selective HO-1 inhibitor, reversed EDG-mediated inhibition of nitrite production, suggesting that HO-1 plays an important role in the suppression of NO production by EDG. Taken together, these results indicate that EDG isolated from Galla Rhois suppresses LPS-stimulated NO production in RAW 264.7 macrophages via HO-1 induction.

Elevation of Nitric Oxide Synthase Activity by Dimethyladenosine from Silkworm Pupae in Aged Rats

  • Ahn, Mi-Young;Han, Jea-Woong;Hong, Yoo-Na;Hwang, Jae-Sam
    • Toxicological Research
    • /
    • v.24 no.3
    • /
    • pp.169-174
    • /
    • 2008
  • This study examined the mechanisms underlying the effects of the vasorelaxation active substance(VAS), dimethyladenosine-5'-L-arabinose, and its partial purification fraction on nitric oxide synthase in improving erectile dysfunction with particular focus on the nitric oxide (NO)-cGMP pathways. Two rat models, 9-month-old SD rats and 11-month-old SD rats, were given VAS(40 mg/kg per day) for 4 days, The aqueous fraction of silworm male pupae extract; semi-purified VAS(100 mg/kg per day) for 10 days, respectively. The NOS activities of the following three enzymes were examined: neuronal NO synthase(nNOS), inducible NOS(iNOS), endothelial NOS(eNOS), vascular endothelial growth factor on endothelial cells(VEGF) and anti-inflammation effect of Tumor necrosis factor-$\alpha$. The results showed increases in the nitric oxide synthase activities. Western blotting of the tissue homogenate showed an increase in the nNOS level in the brain and tongue, and an increase in the endothelial NO synthase(eNOS) level in penis. However, there was little association with VEGF production in HUVEC endothelial cells and no relationship with TNF-$\alpha$ which showed low levels.

The Effects of Endogenously and Exogenously Induced Nitric Oxides on the Nociperception of Rats (내.외인성으로 유도된 Nitric Oxide가 흰쥐의 통각전달에 미치는 효과)

  • 방준석;류정수;신창열;양성준;송현주;박전희;제현동;손의동;허인회
    • YAKHAK HOEJI
    • /
    • v.45 no.1
    • /
    • pp.116-124
    • /
    • 2001
  • Nitric oxide is a labile, gaseous, broad spectrum second messenger that used in various tissues and cells. If it is induced by endogenously and exogenously in the neuronal cells, it is able to mediate analgesia or hyperalgesia at the periphery and in the spinal level respectively. This dual role of nitric oxide in the sensory system is very intriguing but has not been fully understood yet. In this experiment, acetylcholine (300 $\mu$g/paw), sodium nitroprusside (600 $\mu$g/paw), and L-arginine (300 $\mu$g/paw) represented antinociceptive effect to noxious topical stimulus, but pronociceptive responses followed by spinally application (20$\mu$g/5$\mu$l, 10$\mu$g/3$\mu$l, 500$\mu$g/5$\mu$l respectively). Calcium ion is critical element which activates nitric oxide synthase, therefore verapamil (300 $\mu$g/paw) and NOS inhibitor (20 mg/kg, L-NAME or L-NOArg) are injected into right hind paw (i.pl.). When verapamil is combined with NOS inhibitors analgesic effects through NO-cGMP pathway are inhibited as compared with ACh alone. Diluted formalin (2.5%), when injected into rats'hind paw (0.05 ml), elicited a biphasic algesic responses and nitric oxide had an analgesic effect on both $A\delta$ and C sensory nerve fibers which manipulate the phases respective1y. Nitric oxides, which produced from constitutive nitric oxide synthase, activated cyclooxygenase-type I and then prostaglandins are produced from them. So, indomethacin and ibuprofen, inhibitors of COX$_1$enzyme, when pretreated intraperitoneally (100 mg/kg) could reduce the hyperalgesic state. From these results, it is possible to imagine that the intrathecally administered NO donors expressed hyperalgesia through both long-term potentiation mechanism and arachidonic acid-prostaglandin cascade.

  • PDF

Effects of Nitric Oxide Donor Supplementation on Copper Deficient Embryos and Nitric Oxide-Mediated Downstream Signaling (Nitric Oxide Donor 첨가가 구리 결핍 배아의 발달과 Nitric Oxide 하위 신호전달체계에 미치는 영향)

  • Yang, Soo-Jin
    • Journal of Nutrition and Health
    • /
    • v.41 no.8
    • /
    • pp.691-700
    • /
    • 2008
  • One suggested mechanism underlying copper (Cu) deficiency teratogenicity is a low availability of nitric oxide (NO), signaling molecule which is essential in developmental processes. Increased superoxide anions secondary to decreased activities of Cu-zinc superoxide dismutase (Cu-Zn SOD) in Cu deficiency can interact with NO to form peroxynitrite, which can nitrate proteins at tyrosine residues. In addition, peroxynitrite formation can limit NO bioavailability. We previously reported low NO availability and increased protein nitration in Cu deficient (Cu-) embryos. In the current study, we tested whether Cu deficiency alters downstream signaling of NO by assessing cyclic GMP (cGMP) and phosphorylated vasodilator-stimulating phosphoprotein (VASP) levels, and whether NO supplementation can affect these targets as well as protein nitration. Gestation day 8.5 embryos from Cu adequate (Cu+) or Cu- dams were collected and cultured in either Cu+ or Cu- media for 48 hr. A subset of embryos was cultured in Cu- media supplemented with a NO donor (DETA/NONOate; 20 ${\mu}M$) and/or Cu-Zn SOD. Cu-/Cu- embryos showed a higher incidence of embryonic and yolk sac abnormalities, low NO availability, blunted dose-response in NO concentrations to increasing doses of acetylcholine, low mRNA expression of endothelial nitric oxide synthase (eNOS), increased levels of 3-nitrotyrosine (3-NT) compared to Cu+/Cu+ controls. cGMP concentrations tended to be low in Cu-/Cu- embryos, and they were significantly lower in Cu-/Cu- yolk sacs than in controls. Levels of phosphorylated VASP at serine 239 (P-VASP) were similar in all groups. NO donor supplementation to the Cu- media ameliorated embryonic and yolk sac abnormalities, and resulted in increased levels of cGMP without altering levels of P-VASP and 3-NT. Taken together, these data support the concept that Cu deficiency limits NO availability and alters NO/cGMP-dependent signaling in Cu- embryos and yolk sacs, which contributes to Cu deficiency-induced abnormal development.

YH439, a Hepatoprotective Agent, Suppresses Cytokines and Nitric Oxide Production in LPS-primed Rats Administered with $CCL_4$ ($CCI_4$와 Lipopolysaccharide로 유도한 흰쥐 간 독성에 대한 YH439의 방어작용 : cytokines 및 nitric oxide 생성의 억제)

  • 김연숙;이종욱;김낙두
    • YAKHAK HOEJI
    • /
    • v.43 no.2
    • /
    • pp.198-207
    • /
    • 1999
  • The aim of the present investigation was to examine whether YH439, a hepatoprotective agent, exerts protective effect against hepatotoxicity and reduces the production of cytokines and NO in lipopolysaccharide (LPS)-primed rats with carbon tetrachloride ($CCl_4$). Administration of LPS following a single dose of CCl4 injection resulted in remarkable elevations of the serum $TNF{\alpha},{\;}IL-l{\beta$ and IL-6 level. The serum NO level was moderately elevated and severe liver damage was evidenced by increases in serum alanine aminotransferase (ALT) and sorbitol dehydrogenase (SDH) activities. YH439 decreased the levels of TNF, $IL-l{\beta}$, IL-6, ALT, SDH as well as NO in the serum elevated by CCl4+LPS in a dose-dependent manner. Inducible nitric oxide synthase (iNOS) level was decreased in the liver of rats treated with YH439. The increased iNOS activity induced by LPS and $interferon-{\gamma}$ was significantly decreased in RAW 264.7 cells by YH439 treatment. YH439 increased the GSH level decreased by $CCl_4+LPS$ and suppressed the ratio of GSSG/GSH. The reduction of hepatotoxicity by YH439 may associated with the decrease in the production of cytokines as well as suppression of iNOS protein in conjunction with an increase in the GSH level.

  • PDF

Role of Nitric Oxide on the Neuropathic Pain in Streptozotocin-induced Diabetic Rats (Streptozotocin에 의해 유도된 당뇨병성 통증시 Nitric Oxide의 역할)

  • Choi, Jin-Jung;Joen, Byeong-Hwa;Yoon, Seok-Hwa;Lee, Young-Ho;Kim, Moo-Gang;Kim, Kwang-Jin
    • The Korean Journal of Pain
    • /
    • v.14 no.1
    • /
    • pp.12-18
    • /
    • 2001
  • Background: It is controversial whether the change in nitric oxide (NO) expression in the dorsal root ganglia (DRG) may be responsible for developtment and/or maintenance of painful diabetic neuropathy. The aim of this study was to clarify the role of NO in the pathogenesis of painful diabetic neuropathy. Methods: The effect of L-nitroargine methylester (L-NAME) or sodium nitroprusside (SNP) on allodynia was measured in streptozotocin (STZ)-induced diabetic rats. NO concentration was measured in the cerebrospinal fluid (CSF) and plasma of the diabetic rats. NADPH-diaphorase (NADPH-d) histochemistry was performed on the DRG and spinal cords of the STZ-induced diabetic rats. Results: L-NAME, an inhibitor of nitric oxide synthase, alleviated allodynia, while SNP, a nitric oxide donor, aggravated allodynia in diabetic rats. Plasma NO level in the diabetic rats was significantly decreased compared with control rats. NO level in the CSF of diabetic rats did not differ from that of the control rats. NADPH-d positive cells were decreased in the DRG of diabetic rats. However, NADPH-d histochemistry in the diabetic spinal cord was not different from that of the control rats. Conclusions: Downregulation of NO expression in the diabetic rats may not be causally related to the development and/or maintenance of painful diabetic neuropathy.

  • PDF

Ceramide analogs inhibit inducible nitric oxide synthase expression and nitric oxide production in interferon-gamma and lipopolysaccharide-stimulated RAW 264.7 macrophages.

  • Park, Sung-Sik;Kim, Hae-Jong;Yim , Chul-Bu;Kim, Mie-Young;Chun, Young-Jin
    • Proceedings of the PSK Conference
    • /
    • /
    • pp.313.1-313
    • /
    • 2002
  • Nitric oxide (NO) production through the inducible nitric-oxide synthase (iNOS) pathway has been implicated in inflammatory diseases and cellular injury. Inhibition of various genes related to inflammation, including iNOS is one of the major roles of well-known anti-inflammatory drugs. In the present study, the effects of ceramide analogs on iNOS expression and NO production were evaluated to investigate how ceramide and its structurally related analogs modulate NO-mecliated cellular signals and inflammation. (omitted)

  • PDF

Induction of Nitric Oxide Production by Bafilomycin A1 in Mouse Leukemic Monocyte Cell Line

  • Hong, Jang-Ja;Nakano, Yasuhiro;Ohuchi, Kazuo;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • v.14 no.3
    • /
    • pp.143-147
    • /
    • 2006
  • In the mouse leukemic monocyte cell line RAW 264.7, the vacuolar-type $(H^+)$-ATPase (V-ATPase) inhibitor bafilomycin $A_1$ at 10 and 100 nM decreased cell growth and survival as determined by 3-(4,5-dimethyl(thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in a concentration-dependent manner. At such concentrations, bafilomycin $A_1$ induced nitric oxide (NO) production through the expression of inducible nitric oxide synthase (iNOS). The bafilomycin $A_1$-induced NO production was inhibited by the NOS inhibitor $N^G$-monomethyl-L-arginine acetate (L-NMMA). Our findings suggest that the V-ATPase inhibitor bafilomycin $A_1$ induces NO production through the expression of iNOS protein.

Inhibition of Nitric Oxide Production from lipopolysaccharide-Treated RAW 264.7 Cells by Synthetic Flavones:Structure-Activity Relationship and Action Mechanism

  • Kim, Soo-Jin;Park, Hae-Il;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.937-943
    • /
    • 2004
  • Recent investigations have shown that certain flavonoids, especially flavone derivatives, inhibit nitric oxide (NO) production by inducible NO synthase (iNOS) in macrophages, which contrib-ute their anti-inflammatory action. For the purpose of finding the optimized chemical structures of flavonoids that inhibit NO production, various A- and B-ring substituted flavones were syn-thesized and evaluated for their inhibitory activity using lipopolysaccharide-treated RAW 264.7 cells. It was found that the optimal chemical structures were A-ring 5,7-dihydroxyflavones hav-ing the B-ring 2',3'-dihydroxy or 3',4'-dihydroxy or 3',4'-hydroxy/methoxy (methoxy/hydroxy) groups. These structurally optimized compounds were revealed to be down-regulators of iNOS induction, but not direct iNOS inhibitors. Of these derivatives that were evaluated, 2',3',5,7-tet-rahydroxyflavone and 3',4',5,7-tetrahydroxyflavone (Iuteolin) showed the strongest inhibition. The $IC_{50}$/ values for these compounds were 19.7 and 17.1 11M, respectively. Therefore, these compounds may have a potential as new anti-inflammatory agents.

Role of Angiotensin II and Nitric Oxide in the Rat Paraventricular Nucleus

  • Yang, Eun-Kyoung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.41-46
    • /
    • 2001
  • To investigate the mutual relationship between angiotensin II (Ang II) and nitric oxide (NO) in paraventricular nucleus (PVN), Ang II receptor type Ia $(AT_{1A}),$ type Ib $(AT_{1B}),$ endothelial constitutive nitric oxide synthase (ecNOS), and neuronal constitutive nitric oxide synthase (ncNOS) mRNA levels of rat PVN were measured after unilateral carotid artery ligation. $AT_{1A}$ and $AT_{1B}$ mRNA levels were markedly elevated 6 hrs after unilateral carotid artery ligation. Losartan injection $(10\;{\mu}g/0.3\;{\mu}l)$ into the PVN augmented of the increment of $AT_{1A}$ and $AT_{1B}$ mRNAs It also increased ecNOS gene expression. In addition, $AT_{1B}$ mRNA levels increased after N-nitro-L-arginine methyl ester (L-NAME) injection $(50\;{\mu}g/0.3\;{\mu}l)$ into the PVN. These results suggest that Ang II and NO in the rat PVN may interplay, at least in part, through regulation of gene expression of ecNOS and $AT_{1B},$ respectively.

  • PDF