• Title, Summary, Keyword: o-DCB

Search Result 22, Processing Time 0.045 seconds

Bench-scale Experiment on Catalytic Decomposition of 1,2 Dichlorobenzene by Vanadia-Titania Catalyst

  • Jeong, Ju-Young;Chin, Sung-Min;Jurng, Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.18 no.7
    • /
    • pp.709-714
    • /
    • 2009
  • Catalytic activities of $V_2O_5/TiO_2$ catalyst were investigated under reaction conditions such as reaction temperature, catalyst size, inlet concentration and space velocity. A 1,2-dichlorobenzene(1,2-DCB) concentrations were measured in front and after of the heated $V_2O_5/TiO_2$ catalyst bed, and conversion efficiency of 1,2-DCB was determined from it's concentration difference. The conversion of 1,2-DCB using a pellet type catalyst in the bench-scale reactor was lower than that with the powder type used in the micro flow-scale reactor. However, when the pellet size was halved, the conversion was similar to that with the powder type catalyst. The highest conversion was shown with an inlet concentration of 100 ppmv, but when the concentration was higher or lower than 100 ppmv, the conversion was found to decrease. Complete conversion was obtained when the GHSV was maintained at below 10,000 $h^{-1}$, even at the relatively low temperature of $250^{\circ}C$. Water vapor inhibited the conversion of 1,2-DCB, which was suspected to be due to the competitive adsorption between the reactant and water for active sites.

1,4-Dicyanobutene Bridged Binuclear Iridium (I, III) Complexes and Their Catalytic Activities

  • Park, Hwa-Kun;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.185-189
    • /
    • 1987
  • Reactions of $Ir(ClO)_4(CO)(PPh_3)_2$ with dicyano olefins, cis-NCCH = CH$CH_2$$CH_2$CN (cDC1B), trans-NCCH = CH$CH_2$$CH_2$CN (tDC1B), trans-NC$CH_2$CH = CH$CH_2$CN (tDC2B), and NC$CH_2$$CH_2$$CH_2$$CH_2$CN (DCB) produce binuclear dicationic iridium (I) complexes, $[(CO)(PPh_3)_2Ir-NC-A-CN-Ir(PPh_3)_2(CO)](ClO_4)_2$ (NC-A-CN = cDC1B (1a), tDC1B (1b), tDC2B (1c), DCB (1d)). Complexes 1a-1d react with hydrogen to give binuclear dicationic tetrahydrido iridium (Ⅲ ) complexes, $[(CO)(PPh_3)_2(H)_2Ir-NC-A-CN-Ir(H)_2(PPh_3)_2(CO)](ClO_4)_2$ (NC-A-CN = cDC1B (2a), tDC1B (2b), tDC2B (2c), DCB (2d)). Complexes 2a and 2b catalyze the hydrogenation of cDC1B and tDC1B, respectively to give DCB, while the complex 2c is catalytically active for the isomerization of tDC2B to give cDC1B and tDC1B and the hydrogenation of tDC2B to give DCB at $100^{\circ}C$.

  • PDF

Prediction of Adsorption Isotherms and Diffusivity on Activated Carbon for Persistent Organic Pollutant(2,3,7,8-TCDD) (활성탄 위에서 잔류성 유기 오염물질(2,3,7,8-TCDD)의 등온 흡착식 및 확산계수 예측)

  • Lim, Young-Il;Son, Hae-Jeong;Lee, Ohsung;Nam, Kyong-Soo;Yoo, Kyoung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.747-754
    • /
    • 2009
  • In this study, adsorption isotherms of o-DCB(ortho-dichlorobenzene) on an activated carbon heated at $1000^{\circ}C$ for 24 hours were obtained by experiment and were predicted by using molecular simulation. The initial molecular structure of the activated carbon was designed on the basis of its molecular formula and functional groups ratio measured experimentally. Then, the molecular structure was optimized using the COMPASS(condensed-phase optimized molecular potentials for atomistic simulation studies) force field. The particle porosity, specific surface area, and particle density obtained from the optimized molecular structure of activated carbon were compared with those experimental data. The errors between experimental data and simulation results of the particle porosity, specific surface area, and particle density were shown as 7.6, 3.8, and 2.8%, respectively. Adsorption isotherms constants of o-DCB are calculated by the GCMC(grand canonical Monte Carlo) method in the optimized molecular structure of activated carbon. The simulation result of the adsorption isotherms showed an error of under 3%, compared to that of experimental data. Adsorption isotherms, adsorption heat and pore diffusivity of 2,3,7,8-TCDD(tetrachlorodibenzo-p-dioxin) was finally obtained in the same molecular structure of the activated carbon as used for o-DCB. Thus, adsorption characteristics of persistent organic pollutants on activated carbon, which are not easy to experimentally evaluate, are predicted by the molecular simulation.

A Study on Catalysts for Simultaneous Removal of 1,2-Dichlorobenzene and NOx (1,2-Dichlorobenzene 및 질소산화물 동시제거를 위한 촉매연구)

  • Park, Kwang Hee;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.522-526
    • /
    • 2009
  • The catalytic oxidation of 1,2-dichloribenzene (1,2-DCB) and simultaneous catalytic reduction of nitrogen oxides over the single catalyst has been investigated over various metals (Ru, Mn, Co and Fe) supported on $Al_2O_3$ and $CeO_{2}$. The activity of the different catalysts for catalytic oxidation of 1,2-dichloribenzene depended on the used metal, Ru/Co/$Al_2O_3$, Mn-Fe/CeO2 and Cr/$Al_2O_3$ (commercial catalysts) being the most actives ones. In the catalytic oxidation of chlorobenzene (CB), Ru/Co/$Al_2O_3$ is better than Pt-Pd/$Al_2O_3$, which is the well-known catalyst good for VOC oxidation. Furthermore, it has a good durability on the deactivation by $Cl_2$ and sulfur. For nitrogen oxides (NOx) removal, NOx conversion was 70% at $260^{\circ}C$.

In situ FT-IR Study of 1,2-dichlorobenzene Decomposition over VOx/Mesoporous Titania by Prepared Spray Pyrolysis (분무 열분해법을 이용해 제조된 VOx/Mesoporous Titania 상에서 1,2-dichlorobenzene의 분해반응에 대한 in situ FT-IR 연구)

  • Jeon, Jong-Ki;Jung, Kyeong Youl;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.582-585
    • /
    • 2011
  • In this study, surface-adsorbed species of 1,2-dichlorobenzene (1,2-DCB) on mesoporous $V_2O_5/TiO_2$ catalysts synthesized by spray pyrolysis were investigated through the adsorption/desorption performed using in situ FT-IR cell. Also, the comparison of adsorbed species with $TiO_2$ and $V_2O_5/TiO_2$ synthesized by the incipient wetness was carried out.

A Study on the Activated Carbon Injection and Filtration Process for Removal of Chlorinated Organic Compound in the Incinerator Flue Gas (활성탄의 분무 여과에 의한 소각로 배가스 중의 유기 염소계 화합물의 제거 공정 연구)

  • Choo, Changupp;Whang, Jaedong;Lee, Joyoung;Cho, Chulhoon;Shin, Byungchul
    • Clean Technology
    • /
    • v.6 no.2
    • /
    • pp.113-119
    • /
    • 2000
  • Due to the toxicity of dioxin in the incinerator flue gas, it becomes a severe social problem. Activated carbon adsorption process is one of the methods for removing dioxin in the flue gas and was investigated its performance for removing hazardous organic compounds. Since dioxin is very hazardous material, 1,2-dichlorobenzene(o-DCB), one of the precursor material of dioxin, was used as adsorbate. The effects of air flow rate, pressure drop in the bag filter, operation temperature of bag filter, and kinds of adsorbents on the removal of o-DCB were measured and analysed. Experimental results showed that the operating temperature was recommended within the range of $140{\sim}170^{\circ}C$ considering the operating condition of incinerator. Also it was necessary to maintain the pressure drop of bag filter $120mmH_2O$ for enhancing the adsorption at the surface layer of activated carbon formed on the bag filter. The use of mixture of same amount of activated carbon and diatomite showed more than 90% removal of o-DCB and also reduced the consumption of activated carbon.

  • PDF

Microemulsifieation of Chlorinated Hydrocarbon/water with Mixed Surfactant Systems (혼합 계면활성제를 이용한 염소화 탄화수소l물의 마이크로에멀젼 연구)

  • 김천희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.3
    • /
    • pp.365-373
    • /
    • 1998
  • The phase behavior of chlorinated hydrocarbon/mixed surfactants/water microemulsion systems were investigated for dry cleaning solvent properties. With appropriate surfactant mixtures, Winsor type I-III-II microemulsions were generated which is the same as hydrocarbon systems. For perchloroethylene(PCE) with mixed Tween systems, the optimum salinity(S*) decreases and the optimum solubilization parameter(o*) increases with decreas- ing HLB. For PCE with mixed Aerosol MA and ethoxylated alcohol systems, S* and o* both increase with increasing ethylene oxide moles. For dichlorobenzene(DCB) with mixed Aerosol MA and ethoxylated or propoxylated sulfate systems, S* and o* both increase with increasing ethylene oxide moles or propylene oxide moles.

  • PDF

Removal of Chlorinated Organic Compounds in Flue Gas by Activated Carbon Injection in a Semi-Drying Reactor (반건식 반응기에서의 활성탄 혼합주입에 의한 소각로 배가스중의 유기 염소계 화합물의 제거 공정 연구)

  • Choo, Changupp;Whang, Jaedong;Lee, Joyoung;Cho, Chulhoon;Shin, Byungchul
    • Clean Technology
    • /
    • v.6 no.2
    • /
    • pp.121-127
    • /
    • 2000
  • There are several kinds of hazardous materials in incinerator flue gas, such as particulate matter, acid gas, heavy metal, dioxin, etc. The activated carbon adsorption is considered as one of the methods removing dioxin from flue gas. Without any additional equipment and facilities, the activated carbon was mixed with lime and sprayed in the semi-drying reactor of an incinerator and filtered in the bag filter, and its efficiency of removing hazardous organic material was investigated. 1,2-dichlorobenzene (o-DCB) was used as a precursor material of dioxin and the effects of the activated carbon amount, the operating temperature of the reactor, and the atomizer r.p.m were measured and analyzed. Experimental results showed that the optimum outlet temperature of the reactor was $145^{\circ}C$ considering the performance of the bag filter, and the adsorption performance improved with the increase of the atomizer r.p.m. Also the performance of removing o-DCB in the bag filter is higher than of the semi-drying reactor.

  • PDF