• Title, Summary, Keyword: orchard soil

Search Result 207, Processing Time 0.041 seconds

Response of Microbe to Chemical Properties from Orchard Soil in Gyeongnam Province (경남지역 과수원 토양 화학성분이 미생물 생태에 미치는 영향)

  • Lee, Young-Han;Zhang, Yong-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.236-241
    • /
    • 2011
  • Soil microbial diversity was responsible for a strong effect on the chemical properties of orchard soils. This study evaluated a relationship between soil chemical properties and soil microbial diversities at 25 sites in orchard soils in Gyeongnam Province. The average nutrients in the orchard soils were 2.6 times for available phosphorous, 2.3 times for exchangeable potassium and 1.3 times for exchangeable calcium higher compared to recommend concentrations in the orchard soils. Contents of available phosphorous and organic matter in the inclined piedmont soils were higher than those in the other topographical soils (p<0.05). Populations of fungi and fluorescence Pseudomonas sp. in the silt loam soils were significantly higher than those in the sandy loam soils (p<0.05). In principal component analysis of chemical properties and microbial populations in the upland soils, our findings suggested that population of bacteria should be considered as potential factor responsible for the clear orchard soils differentiation. The soil organic matter was significantly negative correlation with population of bacteria whereas was positive correlation with population of fungi in orchard soils.

Comparison of the Surface Chemical Properties of Plastic Film House, Upland, and Orchard Soils in Gyeongbuk Province

  • Park, Sang-Jo;Park, Jun-Hong;Kim, Chan-Yong;Seo, Young-Jin;Kwon, Oh-Heun;Won, Jong-Gun;Lee, Suk-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.115-124
    • /
    • 2016
  • The objectives of this study were to evaluate the soil fertility about plastic film house, upland, and orchard in Gyeongbuk Province, Korea. The surface chemical properties of soil samples were investigated every 4 year from 2000 year at upland, 2001 year at orchard, and 2002 year at plastic film house. During 12 year's monitoring, mean soil pH was increased by 0.7 and 0.8 pH unit from pH 5.7 in upland and orchard, respectively, 0.5 pH unit from pH 6.5 in plastic film house. About 50% of all the field samples occupied within the recommended pH range (pH 6-7). Although soil organic matter (SOM) was gradually increased by about $10g\;kg^{-1}$ for 12 years, 40% of orchard, 49% of plastic film house, and 77% of upland soil samples were still below the 3% SOM. The mean concentration of available phosphate for 12 years in upland, orchard, and plastic film house were 530, 600, and $760mg\;kg^{-1}$, respectively. The relative frequencies exceeding the recommended available phosphate range ($300-550mg\;kg^{-1}$) were 43%, 53%, and 66% at upland, orchard, and plastic film house soils, respectively. $NH_4OAc$ exchangeable $K^+$ of upland, orchard, and plastic film house in the last soil test were 0.8, 0.9, and $1.6cmol_c\;kg^{-1}$, respectively. The relative frequencies above the recommended K level were 56% and 70% of orchard and plastic film house soil samples, respectively. The levels of crop nutrients except exchangeable Ca and Mg in upland soil were tended to increase gradually in the three fields. Exchangeable Mg, EC, available phosphate, organic matter and soil pH could be used as principle components to differentiate the chemical properties of three land fields. This analysis revealed that the soil fertility was affected by cropping method and field management, although additional research is needed to assess the importance of management on soil chemical properties and many fields indicate an opportunity for improvement in fertilizer management.

Effect of Cover Crop Species and Liquid Manure Application Rate on Green Manure Production, Leaf Mineral Content, Fruit Quality and Soil Chemical Properties in Pear Orchard

  • Lee, Seong Eun;Park, Jin Myeon;Park, Young Eun;Choi, Dong Geun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.558-562
    • /
    • 2014
  • Cover cropping and liquid manure application are considered as effective ways to replace the use of chemical fertilizer in orchard. This study was conducted to investigate the effect of cover crop species and liquid manure application rate on green manure production, leaf mineral content, fruit quality and soil chemical properties in pear orchard. The treatments include rye and hairy vetch as cover crops, two liquid manure application levels based on N and $K_2O$ requirement on each cover crop species, and chemical fertilizer as control. Green manure production was higher in hairy vetch than in rye. K content of pear leaves and soil exchangeable K content increased in N based liquid manure application treatments. The yield was higher in rye + liquid manure and fertilizer treatments, and fruit quality was not different between the treatments. Taking all of these into account, rye + $K_2O$ requirement-based liquid manure application is recommended in pear orchard for not only sufficient nutrient supply but also prevention of any problem related with soil $K_2O$ accumulation in pear orchard in long-term perspective.

Soil Organic Carbon of Soil Series from 2003 to 2010 in Korea

  • Kim, Yoo Hak;Kang, Seong Soo;Kim, Myung Sook;Kong, Myung Suk;Choi, Soon Kun;Oh, Taek Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.623-640
    • /
    • 2013
  • Soil organic carbon (SOC) of soil series is necessary to calculate soil C sequestration due to IPCC default categorized by climate regions and by soil types. The 3,400 thousand data were downloaded from agricultural soil information system and analyzed to get averages of soil order, soil series, and textual family for the three different soil management practices in Korea. The SOC content was $13.3{\pm}5.38g\;kg^{-1}$ in paddy field, $13.7{\pm}7.19g\;kg^{-1}$ in upland field, and $15.2{\pm}8.22g\;kg^{-1}$ in orchard soil, respectively. As SOC in orchard was 10% greater than that in upland, orchard must be managed with applying compost. The SOCs of inceptisols, which was largely distributed in Korea, were $13.6{\pm}5.48g\;kg^{-1}$ in paddy field, $14.1{\pm}7.38g\;kg^{-1}$ in upland field, and $15.3{\pm}8.20g\;kg^{-1}$ in orchard soil, respectively. The SOCs of alfisols were $13.6{\pm}4.96g\;kg^{-1}$ in paddy field, $13.7{\pm}6.99g\;kg^{-1}$ in upland field, and $15.6{\pm}8.59g\;kg^{-1}$ in orchard soil, respectively. The SOCs of entisols were $11.7{\pm}5.16g\;kg^{-1}$ in paddy field, $12.8{\pm}7.05g\;kg^{-1}$ in upland field, and $13.7{\pm}7.81g\;kg^{-1}$ in orchard soil, respectively. The SOCs of ultisols were $12.7{\pm}4.79g\;kg^{-1}$ in paddy field, $12.7{\pm}6.22g\;kg^{-1}$ in upland field, and $16.3{\pm}8.49g\;kg^{-1}$ in orchard soil, respectively. The fact that soils containing greater clay content in textual family had also more SOC content revealed that SOC could be also dependent on some soil properties as well as soil order. Because SOC differences among soil series representing same textual family were greater than those among textual family, SOC differences should be mainly affected by management practices such as compost application.

Fertility Assessment of the Piggery Wastewater Trickling Filtrate for Orchard Grass (Dactylis glomerata L.) and Soil

  • Yang, Jae E.;Kim, Jeong-Je;Shin, Young-Oh;Shin, Myung-Kyo;Park, Yong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.34-39
    • /
    • 1999
  • In search of a method to achieve sustainable agricultural practices, a trickling filter was employed for the piggery wastewater treatment, where rice straw was the support medium in place of more commonly used materials. The filtrate from the trickling filter were applied to a soil, on which orchard grass (Dactylic glomerata L.) was grown followed by amendment of the treated straw medium. Orchard grass was cut twice, and growth parameters and yields were measured. Soil chemical properties before and after harvesting orchard grass were analyzed. Development of the forage crop was greatly enhanced by the application of the filtrate in terms of fresh weight, dry weight, and the absorption of nutrients. Better growth and higher nutrient uptake were found in the second cutting of the orchard grass. Organic matter content, ionic intensity, exchangeable cations, and phosphate of the soil increased with the application of the filtrate. The relative high concentrations of salts in the piggery trickling filtrate, expressed in electrical conductivity and content of sodium, exerted no detrimental effect on the crop and soil.

  • PDF

Impacts of Soil Texture on Microbial Community of Orchard Soils in Gyeongnam Province

  • Kim, Min Keun;Sonn, Yeon-Kyu;Weon, Hang-Yeon;Heo, Jae-Young;Jeong, Jeong-Seok;Choi, Yong-Jo;Lee, Sang-Dae;Shin, Hyun-Yul;Ok, Yong Sik;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.81-86
    • /
    • 2015
  • Soil management for orchard depends on the effects of soil microbial activities. The present study evaluated the soil microbial community of 25 orchard (5 sites for sandy loam, 7 sites for silt loam, and 13 sites for loam) in Gyeongnam Province by fatty acid methyl ester (FAME) method. The average values for 25 orchard soil samples were $270nmol\;g^{-1}$ of total FAMEs, $72nmol\;g^{-1}$ of total bacteria, $34nmol\;g^{-1}$ of Gram-negative bacteria, $34nmol\;g^{-1}$ of Gram-positive bacteria, $6nmol\;g^{-1}$ of actinomycetes, $49nmol\;g^{-1}$ of fungi, and $7nmol\;g^{-1}$ of arbuscular mycorrhizal fungi. In addition, silt loam soils had significantly low ratio of cy17:0 to $16:1{\omega}7c$ and cy19:0 to $18:1{\omega}7c$ compared with those of loam soils (p < 0.05), indicating that microbial activity increased. The average soil microbial communities in the orchard soils were 26.7% of bacteria, 17.9% of fungi, 12.6% of Gram-negative bacteria, 12.5% of Gram-positive bacteria, 2.5% of arbuscular mycorrhizal fungi, and 2.2% of actinomycetes. The soil microbial community of Gram-negative bacteria in silt loam soils was significantly higher than those of sandy loam and loam soils (p < 0.05).

Effect of Slurry Composting Biofiltration (SCB) Liquid Manure on Shoot Growth and Fruit Qualities of Peach (Prunus persica L.) and Soil Chemical Properties in Orchard

  • Park, Jin Myeon;Lee, Seong Eun;Lim, Tae Jun;Noh, Jae Seung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.530-535
    • /
    • 2013
  • This study was carried out to investigate the effect of slurry composting and biofiltration (SCB) liquid manure application on shoot growth, fruit qualities and soil chemical properties in peach orchard. SCB liquid manure was fertigated ten times from April to October in SCB plot, whereas chemical fertilizer was treated two times as basal and additional fertilizers in control plot. The shoot growth, leaf nitrogen and potassium content, soil exchangeable K, fruit weight and yield were higher in SCB plot than in control. Soluble solid content and acidity, soil organic matter, soil available phosphate and soil exchangeable Mg showed no significant difference between treatments, and the leaf calcium and magnesium content were lower in SCB plot than in control. In conclusion, fertigating SCB liquid manure in peach orchard has positive effects on fruit weight and yield, and it is suggested that periodical soil testing is needed because of the possibility of K accumulation in SCB liquid manure treated soil when the orchard is fertigated based on the soil nitrogen content.

Long-term Assessment of Soil Chemical Properties in Different Soil Texture Orchard Fields in Gyeongnam Province

  • Kim, Min Keun;Sonn, Yeon-Kyu;Kang, Seong-Soo;Heo, Jae-Young;Kim, Dae-Ho;Choi, Yong-Jo;Lee, Sang-Dae;Shin, Hyun-Yul;Ok, Yong Sik;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.240-245
    • /
    • 2015
  • The monitoring of soil fertility changes in orchard is very important for agricultural sustainability. Field monitoring was performed to evaluate the soil chemical properties of 140 orchard (23 sites for sandy loam, 88 sites for loam, 28 sites for silt loam, and 1 site for loamy fine sand) in Gyeongnam province every 4 years from 2002 to 2014. Soil chemical properties such as pH, electrical conductivity, amount of organic matter (OM), available phosphate ($P_2O_5$), lime requirement (LR), exchangeable potassium (K), calcium (Ca), magnesium (Mg), and sodium were analyzed. The amount of OM, exchangeable K, Ca, and Mg were significantly increased as cultivation year increases. The frequency distribution within optimum range of subsoil chemical properties in 2014 was 34.3% for pH, 35.0% for OM, 17.1% for available $P_2O_5$, 22.9% for exchangeable K, 15.7% for exchangeable Ca, and 22.1% for exchangeable Mg. In addition, the available $P_2O_5$ and exchangeable calcium were excess level with portions of 69.3% and 48.6%, respectively. The soil chemical properties in the topsoil and subsoil showed that soil pH was significantly higher in sandy loam soil than those from the loam and silt loam soils. The OM, exchangeable K, Mg, and LR of loam soil were higher than those from the sandy loam soil. These results indicated that a balanced management of soil chemical properties as affected by soil texture can improve the amount of fertilizer applied for sustainable agriculture in orchard field.

Physico-chemical properties between organic and conventional kiwifruit orchards in Korea

  • Cho, Y.;Kim, B.;Cho, H.;Jeong, B.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.242-246
    • /
    • 2011
  • Organic kiwifruit orchard soils were compared with conventional ones in Korea. Soil structure of organic soil had higher gaseous and liquous phase as well as soil porosity in the surface soil. Although the nutritional level of each orchards were quite different among soils, the analysis of both system revealed that organic kiwifruit orchard soil had similar or even higher nutrient level (N and organic matter content in surface soil) compared to conventional ones. The organic matter content of deep soil also had the high tendency in deep soil of organic soil. Higher level of nitrogen in organic surface soil is presumably due to the excessive application of organic compost and liquid fertilizer rather than the contribution by grasses such as green manure. Available phosphorous level of organic system was quite high but similar in surface soil of both system, compared to the recommended level. Potassium, calcium and magnesium levels were also enough in organic kiwifruit orchard soils.

Development of Self-propelled Explosive Subsoiler (1) - Present Status of Soil Compaction and Subsoil Management in Orchard - (자주식 심토환경 개선기 개발(1) - 과수원의 토양 다짐 특성 및 심토 관리 실태 -)

  • Lee, Dong-Hoon;Park, Woo-Pung;Lee, Kyou-Seung
    • Journal of Biosystems Engineering
    • /
    • v.34 no.6
    • /
    • pp.397-403
    • /
    • 2009
  • This study was carried out to investigate the present status of subsoil compaction, and subsoil compaction management in orchard as a basic study for developing a self-propelled explosive subsoiler. Subsoil compaction was evaluated using the soil penetration resistance. Soil cone index was measured using the DIK 5520 type cone penetrometer in several fruit farms such as apple, pear, peach and grapes during growing seasons of these fruit in Jecheon, Gamgok, Choongju, Cheonan and Hwasung areas. Most of the subsoil managing machinery were either explosive type or digging type attached to the tractor or power tiller and turning radius of this machine was more than 3-5 m. Many of the farmers wanted to use the subsoiler which can put lime into soil and rupture soil at the same time. For most of the orchard fields, soil penetration resistance in vehicle traffic area was increased quickly and reached about 1.0 MPa in 5 cm soil depth. As the soil depth increased to 15-20 cm, cone penetration resistance reached about 2.0-2.5 MPa which restricted root growth seriously. Thus it was concluded that one of the main reason for increasing the soil compaction in orchard fields is agricultural vehicle traffic. In the vicinity of fruit trees, compaction is not so serious compared to that of the vehicle traffic area, but as the soil depth increased to 20-25 cm, in most of the orchard fields soil penetration resistance reached about 2.0-2.5 MPa which is the root growth-limiting value. Considering the rooting depth of fruit trees which ranged 30-60 cm for apple, pear and peach, and 20-30 cm for grape, it is necessary to loosen the subosoil and improve the subsoil conditions using subsoiler.