• Title, Summary, Keyword: organic green teas

Search Result 3, Processing Time 0.025 seconds

Comparative Analysis of Catechins and Antioxidant Capacity in Various Grades of Organic Green Teas Grown in Boseong, Korea (보성산 유기농 녹차의 품질에 따른 카테킨 함량과 항산화능 비교 분석)

  • Park, Kyung-Ryun;Lee, Sang-Gil;Nam, Tae-Gyu;Kim, Young-Jun;Kim, Young-Rok;Kim, Dae-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.82-86
    • /
    • 2009
  • The objective of this study was to evaluate the effect of various solvents on extraction of bioactive phenolics and to analyze the antioxidant capacity and contents of individual catechins in various grades of green teas organically grown in Boseong, Korea. The organic green teas, based on their harvest seasons, were categorized into five grades such as Woo-Jeon, Se-Jak, Jung-Jak, Dae-Jak, and coarse tea. Solvents used to extract phenolics from these teas included water at $23^{\circ}C$ and $70^{\circ}C$ as well as 80% (v/v) aqueous methanol and ethanol. In general, aqueous organic solvents of methanol and ethanol led to higher extraction yields of phenolics than water at $23^{\circ}C$ and $70^{\circ}C$. Total phenolics and antioxidant capacity of the teas extracted with the aqueous organic solvents were approximately 1.5 to 3.2 and 1.8 to 3.8 times higher than those with water at $23^{\circ}C$ and $70^{\circ}C$, respectively. Coarse tea, the lowest grade of green tea, showed approximately 30-60% lower total phenolics and antioxidant capacity compared with the higher grade ones. Reversed-phase HPLC analysis was performed quantitatively to identify individual catechins, gallic acid, and caffeine in teas extracted with 80% (v/v) aqueous methanol. Based on their dry weights, the organic green teas contained about 1.7 to 2.9% of caffeine. Content (mg/g dry weight) of tea catechins decreased in the following order: Woo-Jeon (155.4) > Se-Jak (147.7) > Jung-Jak (143.2) > coarse tea (135.1) > Dae-Jak (130.5). (-)-Epigallocatechin gallate was the most abundant among the catechins analyzed. The highest grade of green tea, Woo-Jeon, had the highest amount of (-)-epigallocatechin gallate at 77.4 mg/g dry weight. Overall, the higher grade of organic green teas tended to have the higher level of antioxidant capacity and catechins.

Physico-chemical Properties of Korean Green Teas by Varieties and Processing Methods (한국산 녹차의 품종 및 가공방법에 따른 이화학적 성상)

  • 신애자;천석조
    • Korean journal of food and cookery science
    • /
    • v.4 no.1
    • /
    • pp.47-52
    • /
    • 1988
  • The chemical composition of 13 different Korean green tea products made from various kinds of tea trees and processing methods was analyzed. The distinct changes in the chemical composition noticed by the harvesting time of tea leaves. The content of crude protein decreased and the contents of crude fat and crude fiber increased as the harvesting runs proceeded. The contents of tanic substances and total sugar tended to increase while caffein content decreased as the runs proceeded. The contents of some organic acids reached to the maximum at the second run of harvest. Steamed leaves had higher chlorophyll content than roasted one, and it resulted in the brighter green and more yellow color of steamed tea products.

  • PDF

The Physicochemical Properties of Korean Wild Teas (Green tea, Semi-fermented tea, and Black tea) According to Degree of Fermentation (발효정도에 따른 국내산 야생차(녹차, 반발효차, 홍차)의 이화학적 특성)

  • 최옥자;최경희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.356-362
    • /
    • 2003
  • The present study was conducted to know the physicochemical properties of non fermented tea and fermented teas with the fermented time of 0 hr (non fermented tea), 10 hrs, 17 hrs (semi-fermented tea), 24 hrs (black tea), respectively The moisture content of non fermented tea, semi fermented, and black tea was 3.01% ~ 3.29%. The contents of reducing sugar, crude lipid, crude protein were increased and that of ascorbic acid was decresed with fermentation. The total contents of those increased as tea was more fermented. The contents of the citric acid and the malic acid were increased with fermentation, but the content of the succinic acid was decreased. However, the total content of organic acid was generally increased with fermentation. The total content of the amino acid was increased with fermentation. In non fermented tea, Thr+theanine, the Asp, and the Glu, were determined in order of content. In semi-fermented tea and black tea, Ter+theanine, Glu, and Asp were determined in order of content. The rate of essential amino acid in the total content of free amino acid was increased with fermentation. The content of theanine was 1.21% in non fermented tea and 1.50% in black tea. The contents of theanine were increased as tea was more fermented. The content of caffein was 3.57% in non fermented tea and 3.55 ~ 3.60% in semi-fermented tea and black tea. These results were inconsistent in the content of caffein. Five kinds of catechin, that is, cathechin, epigallocathechin, epicathechin, epigallocathechin gallate, and epicathechin gallate were extracted. The content of catechin was 14.18% in non fermented tea, but decreased sharply as tea was more fermented.