• Title/Summary/Keyword: organic pollutants

Search Result 265, Processing Time 0.08 seconds

Eco-friendly remediation and reuse for coastal dredged materials using a bioaugmentation technology (생물증강법을 이용한 오염해양준설토의 환경친화적 정화 및 재활용)

  • Kim, In-Soo;Ha, Shin-Young;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.374-381
    • /
    • 2015
  • Occurrences of coastal dredged materials are ever increasing due to port construction, navigational course maintenance and dredging of polluted coastal sediments. Ocean dumping of the coastal dredged materials has become virtually prohibited as London Treaty will be enacted as of the year 2012. It will be necessary to treat and recycle the dredged materials that may carry organic pollutants and heavy metals in a reasonable and effective process: collection of the dredged materials, liquid and solid separation, and treatment of organic compounds and heavy metals. In this study we have developed a continuous bioreactor system that can treat a mixture of silt and particulate organic matter using a microbial consortium (BM-S-1). The steady-state operation conditions were: pH (7.4-7.5), temperature ($16^{\circ}C$), DO (7.5-7.9), and salt concentration (3.4-3.7%). The treatment efficiencies of SCOD, T-N and T-P of the mixture were 95-96%, 92-99%, and 79-97%. The system was also effective in removal of heavy metals such as Zn, Ni, and Cr. Levels of MLSS during three months operation period were 11,000-19,000 mg/L. Interestingly, there was little sludge generated during this period of operation. The augmented microbial consortium seemed to be quite active in the removal of the organic component (30%) present in the dredged material in association with indigenous bacteria. The dominant phyla in the treatment processes were Proteobacteria and Bacteroidetes while dominant genii were Marinobacterium, Flaviramulus, Formosa, Alteromonadaceae_uc, Flavobacteriaceae_uc. These results will contribute to a development of a successful bioremediation technology for various coastal and river sediments with a high content of organic matter, inorganic nutrients and heavy metals, leading to a successful reuse of the polluted dredged sediments.

Changes of characteristics of livestock feces compost pile during composting period and land application effect of compost (축분 퇴비화과정 중 특성변화와 축분퇴비 이용효과)

  • Jeong, Kwang-Hwa;Kang, Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.56-64
    • /
    • 2001
  • Composting of livestock feces is economic and safe process to decrease the possibility of direct leakage of organic pollutants to ecosystem from commercial and environmental point of view. This study was conducted with three different experiments related to composting of livestock feces. The purpose of experiment 1 was to investigate changes of characteristic of compost pile during composting period by low temperature in cold season. To compare composting effect of experimental compost pile and control pile exposed in cold air, experimental compost piles were warmed up by hot air until their temperatures were reached at $35^{\circ}C$. Sawdust, Ricehull and Ricestraw were mixed with livestock feces as bulking agent. The highest temperatures of compost pile during composting period were in sawdust, rice hull, rice straw, and control were $75^{\circ}C$, $76^{\circ}C$, $68^{\circ}C$, $45^{\circ}C$ respectively. Moisture content, pH, C/N and volume of compost were decreased during composting period. Experiment 2 was carried out to study utilization effect of compost by plant. A corn was cultivated for 3 years on fertilized land with compost and chemical fertilizer. The amount of harvest and nutrition value of corn were analyzed. In first year of trial, the amount of harvest of corn on land treated with compost was lower by 20% than that of land treated with chemical fertilizer. In second year, there was no difference in yield of com between compost and chemical fertilizer. In third year, the yield of com on land fertilized with compost was much more than that of land fertilized with chemical fertilizer. The purpose of experiment 3 was to estimate the decrease of malodorous gas originating from livestock feces by bio-filter. Four types of bio-filters filled with saw dust, night soil, fermented compost and leaf mold were manufactured and tested. Each bio-filter achieved 87-95% $NH_3$ removal efficiency. This performance was maintained for 10 days. The highest $NH_3$ removal efficiency was achieved by leaf mold on the first day of operation period. It reduced the concentration of $NH_3$ by about 95%. Night soil and fermented compost showed nearly equal performance of 93 to 94% for 10 days from the beginning of operation. The concentration of hydrogen sulfide and methyl mercaptan originating for compost were equal to or less than $3mg/{\ell}$ and $2mg/{\ell}$, respectively. After passing throughout the bio-filter, hydrogen sulfide and methyl mercaptan were not detected.

  • PDF

Anaerobic Biodegradability of Leachates Generated at Landfill Age (매립년한에 따른 침출수의 혐기성 생분해 특성)

  • Shin, Hang-Sik;Lee, Chae-young;Kang, Ki-hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.1
    • /
    • pp.90-96
    • /
    • 2000
  • The composition of leachates varies depending on the waste characteristics, landfill age and landfilling method. Generally, leachates contain high dissolved organic substance and ammonia nitrogen whereas phosphorus concentration was very low. Leachate A produced from young landfill is characterized by high BOD5/COD ratio (0.8) whereas leachate C produced from old landfill has lower BOD5/COD ratio (0.1). Maximum biochemical methane potential of leachate A, B (from medium landfill) and C were 271,106 and 4 ml CH4/g-COD, respectively. On the other hand, the maximum biodegradability of leachate A, B, and C were 75,30, and 1%, respectively. These results indicated that anaerobic treatment of leachate from young landfill was effective in removing organic pollutants. In case of leachate C, carbon might reside in the form of large molecular weight organic compounds such as lignins, humic acids and other polymerized compounds of soils, which are resistant to biodegradation. The lag-phase period increased with the increasing organic concentration in leachate. In case of leachate A of concentration greater than 25%, the lag-phase period increased sharply. This implied that the start-up period of anaerobic process using an unacclimated inoculum could be extended due to the higher concentration of leachate. This relatively long lag-phase is probably related to the fact that most of the inhibitory compounds have been diluted beyond their inhibitory concentrations of less than 50%. Furthermore, the ultimate methane yield and methane production rate decreased as leachate concentration increased. It was anticipated the potential inhibition was related with the steady-state inhibition as well as the initial shock load.

  • PDF

Sorption of Arsenite Using Nanosized Mackinawite (FeS)-Coated Silica Sand (나노 크기 매킨나와이트로 코팅된 규사를 이용한 아비산염의 흡착)

  • Lee, Seungyeol;Kang, Jung Chun;Park, Minji;Yang, Kyounghee;Jeong, Hoon Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.185-195
    • /
    • 2012
  • Due to the high reduction and sorption capacity as well as the large specific surface area, nanosized mackinawite (FeS) is useful in reductively transforming chlorinated organic pollutants and sequestering toxic metals and metalloids. Due to the dynamic nature in its colloid stability, however, nanosized FeS may be washed out with the groundwater flow or result in aquifer clogging via particle aggregation. Thus, these nanoparticles should be modified such as to be built into permeable reactive barriers. This study employed coating methods in efforts to facilitate the installation of permeable reactive barriers of nanosized mackinawite. In applying the methods, nanosized mackinawite was coated on non-treated silica sand (NTS) and chemically treated silica sand (CTS). For both silica sands, the maximum coating of mackinawite occurred around pH 5.4, the condition of which was governed by (1) the solubility of mackinawite and (2) the surface charge of both silica and mackinawite. Under this pH condition, the maximum coating by NTS and CTS were found to be 0.101 mmol FeS/g and 0.043 mmol FeS/g respectively, with such elevated coatings by NTS likely linked with impurities (e.g., iron oxides) on its surface. Arsenite sorption experiments were performed under anoxic conditions using uncoated silica sands and those coated with mackinawite at the optimal pH to compare their reactivity. At pH 7, the relative sorption efficiency between uncoated NTS and coated NTS changed with the initial concentration of arsenite. At the lower initial concentration, uncoated NTS showed the higher sorption efficiency, whereas at the higher concentration, coated NTS exhibited the higher sorption efficiency. This could be attributed to different sorption mechanisms as a function of arsenite concentration: the surface complexation of arsenite with the iron oxide impurity on silica sand at the low concentration and the precipitation as arsenic sulfides by reaction with mackinawite coating at the high concentration. Compared to coated NTS, coated CTS showed the lower arsenite removal at pH 7 due to its relatively lower mackinawite coating. Taken together, our results indicate that NTS is a more effective material than CTS for the coating of nanosized mackinawite.

Study on Environmental Hazards of Alternatives for PFOS (PFOS 대체물질의 환경유해성에 관한 연구)

  • Choi, Bong-In;Chung, Seon-Yong;Na, Suk-Hyun;Shin, Dong-Soo;Ryu, Byung-Taek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.317-322
    • /
    • 2016
  • While PFOS sodium salt ($C_8F_{17}SO_3Na$) was not degraded by microorganisms for 28 days, the 4 alternatives were biodegraded at the rates of 21.6% for $C_{25}F_{17}H_{32}S_3O_{13}Na_3$, 20.5% for $C_{15}F_9H_{21}S_2O_8Na_2$, 15.8% for $C_{23}F_{18}H_{28}S_2O_8Na_2$ and 6.4% for $C_{17}F_9H_{25}S_2O_8Na_2$, respectively. The acute toxicity test using Daphnia magna was conducted for 48 hours, the half effective concentration ($EC_{50}$) of PFOS sodium salt ($C_8F_{17}SO_3Na$) was evaluated in 54.5 mg/L. While the 4 alternatives did not show any effect at 500.0 mg/L. The surface tension of the PFOS salt ($C_8F_{17}SO_3Na$) is 46.2 mN/m at a concentration of 500.0 mg/L. While the surface tension of the 4 alternatives was found to be superior to PFOS sodium salt ($C_8F_{17}SO_3Na$). The surface tension of $C_{23}F_{18}H_{28}S_2O_8Na_2$ (20.9 mN/m) has the lowest, followed by $C_{15}F_9H_{21}S_2O_8Na_2$ (23.4 mN/m), $C_{17}F_9H_{25}S_2O_8Na_2$ (27.3 mN/m), $C_{25}F_{17}H_{32}S_3O_{13}Na_3$ (28.2 mN/m). The four kinds of alternatives ($C_{15}F_9H_{21}S_2O_8Na_2$, $C_{17}F_9H_{25}S_2O_8Na_2$, $C_{23}F_{18}H_{28}S_2O_8Na_2$, $C_{25}F_{17}H_{32}S_3O_{13}Na_3$) were found to be superior to PFOS sodium salt ($C_8F_{17}SO_3Na$) in terms of biodegradation, Daphnia sp. acute toxicity and surface tension, and thus they were considered applicable as PFOS alternatives. Especially biodegradation rate of $C_{15}F_9H_{21}S_2O_8Na_2$, $C_{23}F_{18}H_{28}S_2O_8Na_2$ and $C_{25}F_{17}H_{32}S_3O_{13}Na_3$ was relatively high as 15.8~21.6%, and Daphnia sp. acute toxicity and surface tension were considerably superior (surface tension 39~55%) to PFOS sodium salt. Therefore, these alternatives are considered to be available as an alternative of PFOS.