• Title, Summary, Keyword: oxygen inhibition

Search Result 616, Processing Time 0.052 seconds

Inhibition effect of silica nanoparticle on the oxygen uptake rate of activated sludge (실리카 나노입자에 의한 활성슬러지 활성도 저해 효과 분석)

  • Lee, Soo Mi;Cho, Jin Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • Nanotechnology has become one of the fastest developing technologies and recently applied to a variety of industries. Thus, increasing number of nano materials including various nanoparticles would be discharged into wastewater and consequently entering a biological wastewater treatment process. However, the impact of the nano particles on biological wastewater treatment has not been estimated intensively. In this research, we investigated the effect of silica nanoparticle on the oxygen uptake rates (OURs) of activated sludge used in a conventional wastewater treatment process. The inhibition (%) values were estimated from the results of OURs experiments for the silica nanoparticles with various sizes of 10-15, 45-50, and 70-100 nm and concentrations of 50, 250, and 500 ppm. As results, the inhibition value was increased as the size of silica nano particles decreased and the injected concentration increased. The maximum inhibition value was investigated as 37.4 % for the silica nanoparticles with the size of 45-50 nm and concentration of 50 ppm. Additionally, the effect of size and concentration on the inhibition should be considered cautiously in case that the aggregation of particles occurred seriously so that the size of individual particles was increased in aquatic solution.

Inhibition of Pitting Corrosion of Copper Tubes in Wet Sprinkler Systems by Sodium Sulfite (아황산나트륨을 이용한 스프링클러 동배관 공식 부식 방지)

  • Suh, Sang Hee;Suh, Youngjoon;Kwon, HyukSang
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.265-272
    • /
    • 2017
  • Inhibition of pitting corrosion of the copper sprinkler tubes by removing dissolved oxygen in water with sodium sulfite was studied on the wet sprinkler systems operated in 258 household sites. First, air in the sprinkler tubing was removed by vacuum pumping. The tube was then filled with sodium sulfite dissolved in water. Sodium sulfite was very effective in maintaining a very low dissolved oxygen concentration in water in the sprinkler tube for the observation period of six months. Water leakage from the copper sprinkler tube was reduced significantly by using sodium sulfite. Both pitting corrosion process and pitting corrosion inhibition mechanism were investigated by examining microscopical and structural aspects of corrosion pits formed in failed copper sprinkler tube. Pitting corrosion was caused by pressurized air as well as sediments such as sand particles in copper tubes through oxygen concentration cells. It was confirmed microscopically that growth of corrosion pits was stopped by reducing dissolved oxygen concentration to a very level by using sodium sulfite.

Effect of light-curing, pressure, oxygen inhibition, and heat on shear bond strength between bis-acryl provisional restoration and bis-acryl repair materials

  • Shim, Ji-Suk;Lee, Jeong-Yol;Choi, Yeon-Jo;Shin, Sang-Wan;Ryu, Jae-Jun
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.47-50
    • /
    • 2015
  • PURPOSE. This study aimed to discover a way to increase the bond strength between bis-acryl resins, using a comparison of the shear bond strengths attained from bis-acryl resins treated with light curing, pressure, oxygen inhibition, and heat. MATERIALS AND METHODS. Self-cured bis-acryl resin was used as both a base material and as a repair material. Seventy specimens were distributed into seven groups according to treatment methods: pressure - stored in a pressure cooker at 0.2 Mpa; oxygen inhibition- applied an oxygen inhibitor around the repaired material,; heat treatment - performed heat treatment in a dry oven at $60^{\circ}C$, $100^{\circ}C$, or $140^{\circ}C$. The shear bond strength was measured with a universal testing machine, and the shear bond strength (MPa) was calculated from the peak load of failure. A comparison of the bond strength between the repaired specimens was conducted using one-way ANOVA and Tukey multiple comparison tests (${\alpha}$=.05). RESULTS. There were no statistically significant differences in the shear bond strength between the control group and the light curing, pressure, and oxygen inhibition groups. However, the heat treatment groups showed statistically higher bond strengths than the groups treated without heat, and the groups treated at a higher temperature resulted in higher bond strengths. Statistically significant differences were seen between groups after different degrees of heat treatment, except in groups heated at $100^{\circ}C$ and $140^{\circ}C$. CONCLUSION. Strong bonding can be achieved between a bis-acryl base and bis-acryl repair material after heat treatment.

The Effects of Paeonia Lactiflora Pallas on Inhibition of Oxygen Free Radical, Anti-inflammation and MMP-1 Inhibitory Activity (적작약 꽃 추출물의 활성산소 억제와 항염증 및 MMP-1 발현 억제능 효과에 관한 연구)

  • Leea, Jae-Nam;Kim, Young-Sam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.797-806
    • /
    • 2018
  • This study attempted to investigate the effects of Paeonia Lactiflora Pallas (P. lactiflora) on the inhibition of oxygen free radical, anti-inflammation and MMP-1 inhibitory activity and examine its possibility as a functional cosmetic material. For test methods, the inhibition of oxygen free radical after measuring reactive oxygen species (ROS) in the cell, cytotoxicity assessment and anti-inflammation were measured, and MMP-1 inhibitory effects in the HDF cell were measured. According to the test, the inhibition of ROS was confirmed in RAW 264.7 and HDF cells. In terms of cytotoxicity assessment, 90% or higher cell viability was detected at $5/10{\mu}g/mL$ Paeonia Lactiflora Pallas extract while it was 80% or higher at other concentration levels in both RAW 264.7 and HDF cells. In addition, NO production was inhibited in the RAW 264.7 cell while MMP-1 was significantly inhibited in the HDF cell. The above results reveal a possibility of Paeonia Lactiflora Pallas extract as a functional cosmetic material after confirming the inhibition of ROS synthesis in the cell, antioxidant and anti-inflammatory effects by inhibiting NO synthesis, low toxicity on skin cells and anti-aging effect through MMP-1 inhibition.

A Study on the Mechanism of Calcium Binding Inhibition of Cardiac Sarcoplasmic Reticulum by Oxygen Free Radicals (산소대사물에 의한 심장근 Sarcoplasmic reticulum의 칼슘운반 억제 기전에 관한연구)

  • Kim, Hae-Won;Chung, Myung-Hee;Kim, Myung-Suk;Park, Chan-Woong
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.79-89
    • /
    • 1985
  • Mechanism of calcium transport inhibition of cardiac sarcoplasmic reticulum (SR) by oxygen free radicals was examined. Effects of oxygen free radicals generated by xanthine/xanthine oxidase (X/XO) system on isolated porcine ventricle SR were studied with respect to its calcium binding, lipid peroxidation, SH-group content and alteration of membrane protein components. The results are as follows. 1) Calcium binding of isolated SR was markedly inhibited by X/XO. 2) During the incubation of sarcoplasmic reticulum with xanthine/xanthine oxidase, there were marked inclose in lipid peroxidation and reduction of SH-group content. 3) An antioxidant, p-phenylenediamine effectively prevented the lipid peroxidation but partially prevented the calcium binding inhibition of X/XO treated SR. 4) The reduction of SH-group content of SR treated with X/XO was partially prevented by p-phenylendiamine. 5) When modifying SH-group of SR by treatment with DTNB, the inhibition of calcium binding activity was partially prevented. 6) On gel-permeation chromatography of X/XO-treated sarcoplasmic reticulum, there was an increase of small molecular weight products, probably protein degradation products. 7) Semicarbazide, which prevents the cross-linking reaction of protein components, did not affect the calcium binding inhibition of X/XO-treated SR. From these results, it is suggested that the inhibition of calcium binding of SR by oxygen free radicals results from the consequence of multiple changes of SR components, which are lipid peroxidation, SH-group oxidation and degradation of protein components.

  • PDF

A Study on the Corrosion Inhibition Effects of Sodium Heptanoate for Carbon Steel in Aqueous Solution

  • Won, D.S.;Kho, Y.T.
    • Corrosion Science and Technology
    • /
    • v.3 no.6
    • /
    • pp.227-232
    • /
    • 2004
  • The carboxylates as a corrosion inhibitor has been studied by many researchers because of its environmental safety and low depletion rate. However, conventional test methods of inhibitor such as weight loss measurements, linear polarization resistance and corrosion potential monitoring etc., evaluate uniform corrosion of metals. These methods are unable to evaluate crevice-related corrosions, which are encountered in most of heat exchanging facilities. In order to choose the optimum corrosion inhibitor, the appropriate test methods are required to evaluate their performances in service environment. From this point of view, polarization technique was used to evaluate the characteristics of sodium heptanoate on corrosion behavior for carbon steel. Especially a thin film crevice sensor technique were applied to simulate the crevice corrosion in this study. From these experiments, we found that oxygen as an oxidizing agent was required to obtain stable passive film on the metal. Presence of oxygen, however, accelerated crevice corrosion. Potential shift by oxygen depletion and weakened inhibitive film inside the crevice were responsible for such accelerated feature. It is shown that film for corrosion inhibition is a mixture of sodium heptanoate and iron (II) heptanoate as reaction product of iron surface and sodium heptanoate. The iron (II) heptanoate which has been synthesized by reaction of heptanoic acid and ferrous chloride in methanol solution forms bidentate complex.

Inhibition of Aldehyde Dehydrogenase by the Active Oxygen Species (활성산소종에 의한 알데히드 탈수소 효소의 불활성화)

  • 문전옥;김태완;백기주;김기헌
    • YAKHAK HOEJI
    • /
    • v.37 no.6
    • /
    • pp.647-658
    • /
    • 1993
  • The susceptibilities of aldehyde dehydrogenase (AldDH) and alcohol dehydrogenase (ADH) to active oxygen generated by xanthine-xanthine oxidase (XOD) system were studied. Incubation of AldDH with 2$\times$10$^{-3}$ units of XOD for 30 min at $25^{\circ}C$ resulted in the decrease of enzyme activity to 30% and it was inactivated completely when incubated with 5$\times$10$^{-3}$ units of XOD. Whereas 70% of ADH activity was retained after exposure to 5$\times$10$^{-3}$ units of XOD for 30 min, 40% of ADH activity was retained after exposure to 5$\times$10$^{-2}$ unit of XOD for 30 min. This inhibition effect by the active oxygen was preventable by catalase and glutathione, but not by SOD. The rates of the NADPH-dependent oxygen consumption by the liver S-9 mixture and microsomes were also determined in this study. Rate of oxygen consumption is increased in the liver S-9 mix and microsomes from phenobarbital-treated rat, and it was consistent with increased lipid peroxidation. In the presense of ethanol as a substrate, the oxygen consumption rates were increased. It is reported that hepatic AldDH activity is depressed in alcoholic liver diseases, however there is few report that explains the reason of depressed AldDH activity. These results are supportive of the theory that the increase in hepatic ethanol oxidation through the induced ME activity after chronic ethanol feeding generate oxygen radical at elevated rates and it leads to the depression of AldDH activity.

  • PDF

The Importance of Oxidative Stress in the Inhibition of Vasorelaxation Induced by Quinolinedione Derivatives, OQ1 and OQ21 (Quinolinedione 유도체, OQ1과 OQ21에 의한 혈관 이완 억제에 Oxidative stress의 중요성)

  • 김세련;이주영;김화정;유충규;정진호
    • YAKHAK HOEJI
    • /
    • v.43 no.5
    • /
    • pp.652-658
    • /
    • 1999
  • To reveal the inhibitory mechanism of NO-dependent vasorelaxation by quinone derivatives (OQ1 and OQ21), we have compared the generation of free radicals by oxidative stress and the formation of cellular adducts by arylation. First, we measured oxygen consumption by quinone derivatives as a marker of oxidative stress in order to investigate whether these quinone compounds could generate reactive oxygen species. Both OQ1 and OQ21 generated free radicals and OQ21 was more potent. These results suggested that free radicals be involved in the inhibition of vasorelaxation by quinones. Next, we measured the binding capacity of quinone derivatives with intracellular GSH and protein thiols (-SH) in order to investigate whether these quinones have arylation capacity. Compared to positive control groups (menadione), both OQ1 and OQ21 depleted intracellular GSH and protein thiols very slightly. These compounds have low toxicities in mammalian tissues. From these results, we concluded that the inhibition of vasorelaxation by quinone derivatives (OQ1, OQ21) may be cuased by generation of free radicals.

  • PDF

Neuroprotective Effects of Protein Tyrosine Phosphatase 1B Inhibition against ER Stress-Induced Toxicity

  • Jeon, Yu-Mi;Lee, Shinrye;Kim, Seyeon;Kwon, Younghwi;Kim, Kiyoung;Chung, Chang Geon;Lee, Seongsoo;Lee, Sung Bae;Kim, Hyung-Jun
    • Molecules and Cells
    • /
    • v.40 no.4
    • /
    • pp.280-290
    • /
    • 2017
  • Several lines of evidence suggest that endoplasmic reticulum (ER) stress plays a critical role in the pathogenesis of many neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Protein tyrosine phosphatase 1B (PTP1B) is known to regulate the ER stress signaling pathway, but its role in neuronal systems in terms of ER stress remains largely unknown. Here, we showed that rotenone-induced toxicity in human neuroblastoma cell lines and mouse primary cortical neurons was ameliorated by PTP1B inhibition. Moreover, the increase in the level of ER stress markers ($eIF2{\alpha}$ phosphorylation and PERK phosphorylation) induced by rotenone treatment was obviously suppressed by concomitant PTP1B inhibition. However, the rotenone-induced production of reactive oxygen species (ROS) was not affected by PTP1B inhibition, suggesting that the neuroprotective effect of the PTP1B inhibitor is not associated with ROS production. Moreover, we found that MG132-induced toxicity involving proteasome inhibition was also ameliorated by PTP1B inhibition in a human neuroblastoma cell line and mouse primary cortical neurons. Consistently, downregulation of the PTP1B homologue gene in Drosophila mitigated rotenone- and MG132-induced toxicity. Taken together, these findings indicate that PTP1B inhibition may represent a novel therapeutic approach for ER stress-mediated neurodegenerative diseases.

Antioxidant Effects of Phenolic Acids and Ginseng Extract in Aqueous System (수용성 계에서 Phenolic Acid류와 인삼 추출물이 갖는 산화방지 효과)

  • Lee, Hyung-Ok;Park, Ock-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.434-438
    • /
    • 1998
  • The antioxidant effects of 700 ppm ginseng extract, 100ppm caffeic acid, ferulic acid, vanillic acid, or ${\alpha}-topherol$ on the 1% linoleic acid aqueous buffer system was studied by measuring malondialdehyde (MDA) and headspace oxygen. The compounds showed antioxidant activities in the following order: $caffeic\;acid{\geq}ferulic\;acid\;>\;{\alpha}-tocopherol$>ginseng extract>vanillic acid, with the oxidation inhibition ratio of 63.5, 62.9, 52.3, 51.2 and 5.6% of the control according to MDA results. The mixture of 100 ppm caffeic acid, 100 ppm ${\alpha}-tocopherol$ and 700 ppm ginseng extract had a high oxidation inhibition ratio of 91.2%. Headspace oxygen results had a similar trend with the MDA results. Headspace oxygen results showed that the antioxidant activities were in order of ferulic acid>caffeic acid>${\alpha}-tocopherol$>ginseng extract>vanillic acid and headspace oxygen contents were 18.56, 17.78, 17.17, 16.65 and 15.95%, respectively.

  • PDF