• Title, Summary, Keyword: p-compact toral group

Search Result 2, Processing Time 0.022 seconds

HOMOTOPY FIXED POINT SET $FOR \rho-COMPACT$ TORAL GROUP

  • Lee, Hyang-Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.143-148
    • /
    • 2001
  • First, we show the finiteness property of the homotopy fixed point set of p-discrete toral group. Let $G_\infty$ be a p-discrete toral group and X be a finite complex with an action of $G_\infty such that X^K$ is nilpotent for each finit p-subgroup K of $G_\infty$. Assume X is $F_\rho-complete$. Then X(sup)hG$\infty$ is F(sub)p-finite. Using this result, we give the condition so that X$^{hG}$ is $F_\rho-finite for \rho-compact$ toral group G.

  • PDF

HOMOTOPY FIXED POINT SET OF THE HOMOTOPY FIBRE

  • Lee, Hyang-Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.755-762
    • /
    • 1999
  • Let X be a p-compace groyp, Y -> X bd a p-compact-subgroup of X and G -> X be a p-compact toral subgroup of X with $(X/Y)^{hG} \neq 0$. In this paper we show that the homotopy fixed point set of the homotopy fibre $(X/Y)^{hG}$ is $F_p$-finite.

  • PDF