• Title, Summary, Keyword: parallel mean curvature vector

Search Result 19, Processing Time 0.03 seconds

C-parallel Mean Curvature Vector Fields along Slant Curves in Sasakian 3-manifolds

  • Lee, Ji-Eun;Suh, Young-Jin;Lee, Hyun-Jin
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.1
    • /
    • pp.49-59
    • /
    • 2012
  • In this article, using the example of C. Camci([7]) we reconfirm necessary sufficient condition for a slant curve. Next, we find some necessary and sufficient conditions for a slant curve in a Sasakian 3-manifold to have: (i) a $C$-parallel mean curvature vector field; (ii) a $C$-proper mean curvature vector field (in the normal bundle).

GENERIC SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR OF A SASAKIAN SPACE FORM

  • Ahn, Seong-Soo;Ki, U-Hang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.215-236
    • /
    • 1994
  • The purpose of the present paper is to study generic submanifolds of a Sasakian space form with nonvanishing parallel mean curvature vector field such that the shape operator in the direction of the mean curvature vector field commutes with the structure tensor field induced on the submanifold. In .cint. 1 we state general formulas on generic submanifolds of a Sasakian manifold, especially those of a Sasakian space form. .cint.2 is devoted to the study a generic submanifold of a Sasakian manifold, which is not tangent to the structure vector. In .cint.3 we investigate generic submanifolds, not tangent to the structure vector, of a Sasakian space form with nonvanishing parallel mean curvature vactor field. In .cint.4 we discuss generic submanifolds tangent to the structure vector of a Sasakian space form and compute the restricted Laplacian for the shape operator in the direction of the mean curvature vector field. As a applications of these, in the last .cint.5 we prove our main results.

  • PDF

Generic submanifolds of a quaternionic kaehlerian manifold with nonvanishing parallel mean curvature vector

  • Jung, Seoung-Dal;Pak, Jin-Suk
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.339-352
    • /
    • 1994
  • A sumbanifold M of a quaternionic Kaehlerian manifold $\tilde{M}^m$ of real dimension 4m is called a generic submanifold if the normal space N(M) of M is always mapped into the tangent space T(M) under the action of the quaternionic Kaehlerian structure tensors of the ambient manifold at the same time.The purpose of the present paper is to study generic submanifold of quaternionic Kaehlerian manifold of constant Q-sectional curvature with nonvanishing parallel mean curvature vector. In section 1, we state general formulas on generic submanifolds of a quaternionic Kaehlerian manifold of constant Q-sectional curvature. Section 2 is devoted to the study generic submanifolds with nonvanishing parallel mean curvature vector and compute the restricted Laplacian for the second fundamental form in the direction of the mean curvature vector. As applications of those results, in section 3, we prove our main theorems. In this paper, the dimension of a manifold will always indicate its real dimension.

  • PDF

SUBMANIFOLDS WITH PARALLEL NORMAL MEAN CURVATURE VECTOR

  • Jitan, Lu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.547-557
    • /
    • 1998
  • In this paper, we study submanifolds in the Euclidean space with parallel normal mean curvature vectorand special quadric representation. Especially we give a complete classification result relative to surfaces satisfying these conditions.

  • PDF

SPACE-LIKE SUBMANIFOLDS WITH CONSTANT SCALAR CURVATURE IN THE DE SITTER SPACES

  • Liu, Ximin
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.135-146
    • /
    • 2001
  • Let M(sup)n be a space-ike submanifold in a de Sitter space M(sub)p(sup)n+p (c) with constant scalar curvature. We firstly extend Cheng-Yau's Technique to higher codimensional cases. Then we study the rigidity problem for M(sup)n with parallel normalized mean curvature vector field.

  • PDF

ON THE THEORY OF LORENTZ SURFACES WITH PARALLEL NORMALIZED MEAN CURVATURE VECTOR FIELD IN PSEUDO-EUCLIDEAN 4-SPACE

  • Aleksieva, Yana;Ganchev, Georgi;Milousheva, Velichka
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1077-1100
    • /
    • 2016
  • We develop an invariant local theory of Lorentz surfaces in pseudo-Euclidean 4-space by use of a linear map of Weingarten type. We find a geometrically determined moving frame field at each point of the surface and obtain a system of geometric functions. We prove a fundamental existence and uniqueness theorem in terms of these functions. On any Lorentz surface with parallel normalized mean curvature vector field we introduce special geometric (canonical) parameters and prove that any such surface is determined up to a rigid motion by three invariant functions satisfying three natural partial differential equations. In this way we minimize the number of functions and the number of partial differential equations determining the surface, which solves the Lund-Regge problem for this class of surfaces.

On generic submanifolds of a complex projective space

  • Seong Baek Lee;Seung Gook Han;Nam Gil Kim;Seong Soo Ahn
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.743-756
    • /
    • 1996
  • The purpose of this paper is to compute the covariant derivative of a shape operator of a generic submanifold of a complex space form without using the Green-Stoke's theorem. In particular, we classify complete generic submanifolds of a complex number space $C^m$ with parallel mean curvature vector satisfying a certain condition.

  • PDF

REAL HYPERSURFACES WITH ξ-PARALLEL RICCI TENSOR IN A COMPLEX SPACE FORM

  • Ahn, Seong-Soo;Han, Seung-Gook;Kim, Nam-Gil;Lee, Seong-Baek
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.4
    • /
    • pp.825-838
    • /
    • 1998
  • We prove that if a real hypersurface with constant mean curvature of a complex space form satisfying ▽$_{ξ/}$S = 0 and Sξ = $\sigma$ξ for a smooth function $\sigma$, then the structure vector field ξ is principal, where S denotes the Ricci tensor of the hypersurface.

  • PDF