• Title, Summary, Keyword: polyvinyl chloride

Search Result 211, Processing Time 0.045 seconds

Studies on Optical-fiber Sensor to Monitor Temperature using Reversible Thermochromic Gel Type Cobalt (II) Chloride/Polyvinyl Butyral (가역 감온 변색 겔형 염화 코발트/polyvinyl butyral을 이용한 온도 감지 광섬유 센서 연구)

  • Hwang, KiSeob;Park, JeaHee;Ha, KiRyong;Lee, JunYoung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.436-442
    • /
    • 2014
  • In this study, we developed an optical-fiber sensor using cobalt chloride solution to monitor temperature in real-time between long distance points unaffected by the electro-magnetic wave and the vibration. Cobalt chloride solutions were made using 10% water and 90% ethanol (v/v) solution. The transmittance of these solutions was analyzed on 655 nm using UV-Visible spectrometer regarding temperature change. Also 30.8 mM cobalt chloride solution was gelled by dissolving polyvinyl butyral and the transmittance of this was analyzed on 655 nm regarding temperature change. The results of transmittance and optical power measurement showed decrease of both transmittance and optical power with increase of temperature from 66.8% and 149.5 nW at $25^{\circ}C$ to 7.1% and 48 nW at $70^{\circ}C$, respectively. These results support the possibility of gelled cobalt chloride/polyvinyl butyral as an optical-fiber sensor to monitor temperature change.

Studies on the Oxygen Permeability and It's Proofness of the Various Commercial Polymer Films (상업용 고분자 필름의 산소투과도 및 산소투과 방지도에 관한 연구)

  • Suh, Hwan-Kyu;Kim, Joon-Soo;Lee, Jung-Keun
    • Elastomers and Composites
    • /
    • v.15 no.1
    • /
    • pp.3-9
    • /
    • 1980
  • The oxygen permeability and it's proofness of te various commercial polymer films have been investigated at the constant pressure and temperature. Oxygen proofness, the reciprocals of the oxygen permeability for the various samples, were determined by means of a coulometric oxygen permeability tester. The testing of sample films was performed at constant temperature $(23{\pm}1^{\circ}C)$ under 1 atm. for 24 hours. The order of the relative proofness observed are as follows; oriented Nylon (O. Nylon)> oriented Polyester (O. PET)>nonoriented Nylon (N. Nylon)>nonoriented Polyester (N.PET)> rigid Polyvinyl chloride (Rigid PVC)>semirigid Polyvinyl chloride (Semirigid PVC)> oriented Polypropylene (O. PP)>plasticized Polyvinyl chloride (P. PVC)> casted Polypropylene (C. PP)> low density Polyethylene (LDPE)>high density Polyethylene (HDPE, Inflation)> high density-polyethylene (HDPE, T-die) The oxygen proofness of the films was increased with the polarity cf polymer, the film thickness and mechanical orientation and decreased with the addition of plasticizer in PVC. For the use of wrapping materials, one film with the polar property in the main chain of the polymer molecule and the others with nonpolar property in it are laminated for the protection from oxygen and moisture.

  • PDF

Preparation of PVC-D2EHPA beads by Immobilization of D2EHPA on Polyvinyl Chloride as Solid Phase Extractant and Removal Characteristics of Cu(II) (고체상 추출제로서 Polyvinyl Chloride에 D2EHPA를 고정화한 PVC-D2EHPA의 제조와 Cu(II) 제거 특성)

  • Kam, Sang-Kyu;You, Hae-Na;Lee, Dong-Hwan;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1157-1163
    • /
    • 2014
  • The solid phase extractant (PVC-D2EHPA bead) was prepared by immobilizing di-2-ethylhexyl-phosphoric acid (D2EHPA) with polyvinyl chloride (PVC). The prepared PVC-D2EHPA beads were characterized by using fourier transform infrared spectrometer (FTIR) and scanning electron microscopy (SEM). The removal experiments of Cu(II) by PVC-D2EHPA beads conducted batchwise. The removal kinetics of Cu(II) was found to follow the pseudo-second-order model. The equilibrium data fitted well with Langmuir isotherm model and the maximum removal capacity was 2.6 mg/g at $20^{\circ}C$. The optimum pH region was in the range of 3.5 to 6. and the standard free energy (${\Delta}G^{\circ}$) was between -4.67~-4.98 kJ/mol, indicating the spontaneous nature of Cu(II) removal by PVC-D2EHPA beads.

Radiation Induced-Grafting of Acrylic Acid onto Polyvinyl Chloride Fibers

  • Park, Jae-Ho;Lee, Chong-Kwang
    • Nuclear Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.89-99
    • /
    • 1976
  • The grafting of acrylic acid in aqueous solution to polyvinyl chloride fibers tab been studied in the presence of ferrous, ferric, and cupric salts, The mutual irradiation technique was adopted using a Co-60 source or a Van do Graaff accelerator. The grafting and homopolymerization were suppressed by the cations. Particularly the grafting was suppressed by the cations in the following order of effectiveness : $Cu^{2+}$>$Fe^{2+}$>$Cu^{3+}$. The rate of grafting (in %/hr) was proportional to the 0.76th power of the dose rate over the range from 8.5f $10^3$ rad/hr to $1.4\times10^5$ rad/dr. The apparent activation energy for the grafting was determined to be 6.1 Kcal/mole between $25^{\circ}$ and $75^{\circ}C$ for the mixture of AA-HaO-$(CH_2Cl)_2$, containing Mohr's salt, $4\times10^{-3}$ mole/l. The increase of the grafting was observed when total dose and dose intensity were raised, or when ethylene dichloride as a swelling agent was saturated in the monomer mixture. The grafted polyvinyl chloride fibers showed considerable improvement in moisture regain, heat shrinkage, and melting properties, but tensile properties were not significantly affected by grafting.

  • PDF

Variation of Carbonization Pattern and Crystal Structure of Polyvinyl Chloride Wire Under the Thermal Stresses (열 스트레스에 의한 비닐절연전선의 탄화 패턴 및 결정 구조의 변화)

  • Choi, Chung-Seog;Kim, Hyang-Kon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.332-337
    • /
    • 2008
  • We analyzed carbonization pattern and crystal structure of polyvinyl chloride wire by thermal stress. Copper that is oxidized at normal temperature is a reddish brown. If under the thermal stress range of 500 to 700 [$^{\circ}C$], carbonization and exfoliation occurrence. Section structure of electric wire is same as arrangement of particle in metallograph analysis. But, as thermal stress increases, size of particle is enlarged. Electric wire displays elongation structure in SEM image analysis and elongation structure collapses when receive thermal stress at 300 [$^{\circ}C$]. In EDX analysis, we get the spectra of CuL, CuK, OK, and ClK. FT-IR analysis was shown new spectra with in range of $1,440{\sim}1,430\;[cm^{-1}]$, 1,340 [$cm^{-1}$], 1,240 [$cm^{-1}$].

Graphene oxide dispersed polyvinyl chloride/alkyd green nanocomposite film: Processing and physico-mechanical properties

  • Yadav, Mithilesh;Ahmad, Sharif;Chiu, Fang-Chyou
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.246-256
    • /
    • 2018
  • Graphene oxide (GO) reinforced Polyvinyl chloride (PVC)-Waterborne Castor Alkyd (WCA) nanocomposites (PVC/WCA/GO) films were processed through solution blending technique. TGA showed that the thermal stability of PVC/WCA/GO-0.5 films was better than that of PVC/WCA blend film. With incorporation of 0.5 wt.% GO, the tensile strength and elastic modulus of the blend nanocomposite have significantly improved by about 260% and 185%, respectively, compared with neat polymer. The physicomechanical properties of these films suggest that the PVC/WCA/GO nanocomposite films may have a potential scope for their application in packaging industries. The results are supported by characterizations like FTIR, XRD, TEM and FESEM.

Preparation of isotropic pitch precursor for pitch-based carbon fiber through the co-carbonization of ethylene bottom oil and polyvinyl chloride

  • Liu, Jinchang;Shimanoe, Hiroki;Nakabayashi, Koji;Miyawaki, Jin;Ko, Seunghyun;Jeon, Young-Pyo;Yoon, Seong-Ho
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.276-283
    • /
    • 2018
  • For the first time, polyvinyl chloride (PVC) was used as an easily-handled chlorine source for preparation of isotropic pitch-based carbon fiber (IPCF) incorporating ethylene bottom oil (EO) as a raw material. Pitch precursors were prepared by the chlorination-dehydrochlorination triggered by chlorine radicals originated from PVC; aromatization and poly-condensation reactions occurred by polyene-type radicals from PVC. Radical production and co-carbonization were facilitated by pretreatments of EO through vacuum distillation, bromination, and additional heat treatment. Pitches were prepared by the co-carbonization of pretreated EO and EO containing 20 wt% PVC, and had higher yields and better spinnability than those by simple distillation.

A Study on the Thermal Stability of Polymer Mixtures using Air Bags (에어백용 고분자 혼합물의 열안정성에 관한 연구)

  • Oh, Yang-Hwan;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.353-357
    • /
    • 2003
  • Sodium azide (SA) is commonly used as propellant for inflating automatic safety bags and other chemical manufacturing purposes. The investigation of potentially thermal hazard of sodium azide and its mixture with polymers are very important because it can occur an expected traffic accident so we took a experiment s using different scanning calorimeter (DSC) in nitrogen atmosphere. The decomposition temperature were about $350{\sim}450^{\circ}C$. We could find not only exothermic reaction was remarkably decreased in mixture s of acrylonitrile-butadiene-styrene (ABS) and polyvinyl chloride (PVC), but also increasing mixed rate of ABS, polyvinyl alcohol (PVA) and polymethyl methacrylate (PMMA) decreased thermal decomposition heat.

The Studies of the Water-Vapour Transmission Rate and It's Proofness on the Various Commercial Polymer Films (상업용 고분자 필름의 투습속도 및 방습도에 관한 연구)

  • Hwan Kyu Suh;Jung Keun Lee
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.329-337
    • /
    • 1979
  • The water-vapour transmission ratios (WVTR) of the various commercial polymer films have been investigated at the constant pressure and relative humidity (RH). Water proofnesses, the reciprocals of WVTR for the various samples, were determined using a cup device and maintaining the sample films at a constant temperature ($40{\pm}1^{\circ}C$) and a constant R. H ($90{\pm}2%$) for 24 hours. The following order of the relative proofness was observed; oriented polypropyrene (O.PP) > high density polyethylene (HDPE, Inflation) > high density polyethylene (HDPE. T-die) > casted polypropylene (C. PP) > nonoriented polyester (N. PET) > low density polyethylene (LDPE) > oriented polyester (O. PET) > rigid polyvinyl chloride (Rigid PVC) > semirigid polyvinyl chloride (Semirigid PVC) > nonrigid polyvinyl chloride (Nonrigid PVC) > oriented nylon (O. Nylon) > nonoriented nylon (N. Nylon). And water proofness order was also observed to decrease with the temperature rising; HDPE (T-die) > C. PP > O. PET > LDPE > O. Nylon. The activation energies of LDPE, HDPE (T-die), C. PP, O. PET and O.Nylon films were 12.0, 11.1, 11.4, 11.7, 14.1 kcal/mole, respectively. The WVTR's of the films were increased with the polarity of polymer and the addition of plasticizer in PVC, decreased with the increase of the film thickness and mechanical orientation. The WVTR's of the laminated films O. PP/LDPE, N.Nylon/LDPE, C.PP/LDPE were also more dependent on the film thickness than the WVTR's of the single films.

  • PDF

A Study on Combustion Gases Toxicity Evaluation of Polymeric Material (고분자재료의 연소가스 독성평가에 관한 연구)

  • 박영근
    • Fire Science and Engineering
    • /
    • v.15 no.3
    • /
    • pp.7-13
    • /
    • 2001
  • In this paper, we had analyzed comsbustion gases according to pyrolysis $600^{\circ}c$, $800^{\circ}c$ and $1000^{\circ}c$ for polymeric material using a GASTEC colorimetric gas detector tube in order to combustion gases toxicity evaluation for flame retardant untreated ply wood, flame retardant treated ply wood, flexible polyvinyl chloride and flexible polyurethane foam of polymeric material. As a result, comsbustion gases producted from small specimens of polymeric material had reached fatal to man at a 30 minute exposure time that had possesed toxicity index. Toxicity index at pyrolysis $800^{\circ}c$ of flexible polyvinyl chloride was 31.74. Flexible polyvinyl chloride was the highest toxicity index of flame retardant untreated ply wood, flame retardant treated ply wood, flexible polyvinyl chloride and flexible polyurethane foam. The comsbustion gases producted commonly no concern with pyrolysis temperature had analyzed carbon dioxide($CO_2$) and carbon monoxide(CO). Toxicity index had investigated differently according to pyrolysis temperature even a similar materal.

  • PDF