• Title, Summary, Keyword: prebiotics

Search Result 93, Processing Time 0.034 seconds

Effects of Prebiotics and Probiotics on Swine Intestinal Microflora and Fermentation Products In Vitro Fermentation (In vitro 발효에서 Prebiotics와 Probiotics가 돼지 장내미생물과 발효산물에 미치는 영향)

  • Kim, Dong-Woon;Chae, Su-Jin;Kim, Young-Hwa;Jung, Hyun-Jung;Lee, Sung-Dae;Park, Jun-Cheol;Cho, Kyu-Ho;Sa, Soo-Jin;Kim, In-Cheul;Kim, In-Ho
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.24-29
    • /
    • 2013
  • In the present study, the effects of prebiotics and prebiotics+probiotics on intestinal microflora and fermentation products were evaluated in a pig in vitro fermentation model. The substrates used in this study were iso-malto oligosaccharide (IMO), partially digested chicory-inulin (CI), raffinose (RA), and cyclodextrin (CD) as prebiotics and Lactobacillus reiteri as probiotics. For a pig in vitro fermentation, the experimental diet for growing pigs was predigested using digestive enzymes secreted by small intestine and this hydrolyzed diet was mixed with a buffer solution containing 5% fresh swine feces. The mixture was then incubated with either prebiotics or prebiotics+probiotics for 24 h. Samples were taken at 24 h, and viable counts of microflora, gas, pH, volatile organic compounds (VOCs) and short-chain fatty acid (SCFA) were analyzed. The viable count of Enterobacteriaceae was significantly decreased (p<0.001) in all treatments containing prebiotics and prebiotics+probiotics when compared to the control. However, the number of lactic acid bacteria increased in the prebiotics and prebiotics+probiotics treatment. The pH values in the fermentation fluid decreased in all treatments when compared to the control, and their effects were greater in the prebiotics+probiotics group than prebiotics group. Fermentation with prebiotics resulted in a reduction in malodorous compounds such as ammonia, hydrogen sulfide and skatole when compared to the prebiotics+probiotics group. Short-chain fatty acid production was also higher for treatment with prebiotics+probiotics than treatment with prebiotics. In conclusion, the results of this study demonstrated that fermentation with prebiotics was effective in reducing the formation of malodorous compounds and prebiotics+probiotics was effective in increasing lactic acid bacteria and SCFA and reducing the pH. Moreover, further studies will be needed to determine whether the results observed in the in vitro model would occur in pigs that ingest these prebiotics or probiotics.

Effect of Prebiotics on Intestinal Microflora and Fermentation Products in Pig In Vitro Model

  • Kim, Dong-Woon;Chae, Su-Jin;Cho, Sung-Back;Hwang, Ok-Hwa;Lee, Hyun-Jeong;Chung, Wan-Tae;Park, Jun-Cheal;Kim, In-Cheul;Kim, In-Ho
    • Journal of Animal Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.199-204
    • /
    • 2010
  • The objective of this study was to evaluate the effect of the different types and levels of prebiotics on intestinal microflora and fermentation products in the in vitro fermentation model. The prebiotcs used in this study were IMO (iso-malto oligosaccharide), CI (partially digested chicory-inulin), RA (raffinose) and CD (cyclodextrin). Experimental diet for growing pigs was predigested by digestive enzymes and this hydrolyzed diet was mixed with buffer solution containing 5% fresh swine feces. Then, the mixture was fermented with or without prebiotics at the concentrations of 0.5 and 1.0% for 24 h. Samples were taken at 24 h, and viable count of micoflora, gas, pH, volatile organic compounds and short-chain fatty acids were determined. The viable count of Enterobacteriaceae was significantly decreased (p<0.001) in all treatments added with prebiotics in comparison to control without prebiotics. However, the increase of lactic acid bacteria was observed in the prebiotics treatment. Gas production increased as the level of prebiotics increased. The pH values in the fermentation fluid decreased in a dose-dependent manner with increasing the concentration of prebiotics. The fermentation with prebiotics resulted in the reduction of malodorous compounds such as ammonia, hydrogen sulfide, indole and skatole. The increase in short-chain fatty acid (SCFA) production was observed in the treatments with prebiotics. In conclusion, the results of this study demonstrated that the fermentation with prebiotics was effective in reducing the formation of malodorous compounds and increasing lactic acid bacteria and SCFA. These effects depended on the concentration of prebiotics. Moreover, further study is needed to determine whether the in vitro efficacy on the reduction of malodorous compounds and increase of SCFA would also be observed in animals.

Prebiotics: An overview of current researches and industrial applications (프리바이오틱스 최신 연구 현황 및 제품 개발 동향)

  • Hwang, Hye Won;Lee, Dong-Woo
    • Food Science and Industry
    • /
    • v.52 no.3
    • /
    • pp.241-260
    • /
    • 2019
  • Prebiotics are defined as substrates that are selectively utilized by host microorganisms conferring various health benefits. Current prebiotic researches not only focus on non-digestible oligosaccharides, but also extend to polyphenols and peptides. However, the extended scope of prebiotic research pertains its original purposes: promotion of beneficial bacteria in host guts and production of valuable metabolites. Maintenance of optimal gut microflora plays a key role in host health care benefits including anti-cancer activity, immune response modulation, blood lipid level reduction, increased mineral absorption, and weight loss. With increasing probiotics markets, prebiotics have also received much attention in functional food markets. Hence, many global food companies tempt to develop new prebiotics applicable for preventing human diseases as well as modulating immune system. In this review, we discuss current status of prebiotics research, market progress, and future perspectives of prebiotics.

POTENTIAL APPLICATION OF PREBIOTICS AND PROBIOTICS

  • Kim Saehun
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • /
    • pp.178-186
    • /
    • 2001
  • The importance of probiotics and prebiotics in health-promoting effect on the host is increasing. Recent studies on gastrointestinal system have contributed to further understanding of the mechanisms involved in the interaction between probiotics and prebiotics. In his presentation, the beneficial effects of probiotics and prebiotics, and applications of microencapsulation technique for the application of prebiotics and probiotics are described.

  • PDF

Prebiotics: A Review (프리바이오틱스의 기능에 관한 연구 고찰)

  • Yoon, Jin A;Shin, Kyung-Ok
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.2
    • /
    • pp.191-202
    • /
    • 2017
  • This study was conducted to investigate the characteristics of major prebiotics and the related studies, and to provide basic data for future research. Prebiotics are defined as 'nondigestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon, and thus improve host health'. Well-known prebiotics are inulin, oligofructose, and galacto-oligosaccharide. Prebiotics assist in the health activity of lactic acid bacteria by acting as a substrate for lactic acid bacteria, with their unique physical and chemical properties. Bifidobacteria are known to be beneficial bacteria that prevent intestinal inflammation, maintain intestinal microflora balance, inhibit carcinogenesis, reduce cholesterol, and enhance immunity. However, Bifidobacteria, Lactobacillus, Bacillus, and Weissella are also found in animal-based fermented foods such as milk, cheese, yogurt, and salted fish. Prebiotics can act as a substrate for lactic acid bacteria, helping the activity of lactic acid bacteria and improving health. Therefore, the authors suggest that investigation into the category and effectiveness of prebiotics should be extended in the future through research.

Prebiotics in the Infant Microbiome: The Past, Present, and Future

  • Miqdady, Mohamad;Mistarihi, Jihad Al;Azaz, Amer;Rawat, David
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • The latest definition of a prebiotic is "a substrate that is selectively utilized by host microorganisms conferring a health benefit"; it now includes non-food elements and is applicable to extra-intestinal tissues. Prebiotics are recognized as a promising tool in the promotion of general health and in the prevention and treatment of numerous juvenile diseases. Prebiotics are considered an immunoactive agent, with the potential for long-lasting effects extending past active administration of the prebiotic. Because of its extremely low risk of serious adverse effects, ease of administration, and strong potential for influencing the composition and function of the microbiota in the gut and beyond, the beneficial clinical applications of prebiotics are expanding. Prebiotics are the third largest component of human breast milk. Preparations including galactooligosaccharides (GOS), fructooligosaccharides (FOS), 2'-fucosyllactose, lacto-N-neo-tetraose are examples of commonly used and studied products for supplementation in baby formula. In particular, the GOS/FOS combination is the most studied. Maintaining a healthy microbiome is essential to promote homeostasis of the gut and other organs. With more than 1,000 different microbial species in the gut, it is likely more feasible to modify the gut microbiota through the use of certain prebiotic mixtures rather than supplementing with a particular probiotic strain. In this review, we discuss the latest clinical evidence regarding prebiotics and its role in gut immunity, allergy, infections, inflammation, and functional gastrointestinal disorders.

Plant Cell Wall Polysaccharides as Potential Resources for the Development of Novel Prebiotics

  • Yoo, Hye-Dong;Kim, Do-Jung;Paek, Seung-Ho;Oh, Seung-Eun
    • Biomolecules & Therapeutics
    • /
    • v.20 no.4
    • /
    • pp.371-379
    • /
    • 2012
  • Prebiotic oligosaccharides, with a degree of polymerization (DP) of mostly less than 10, exhibit diverse biological activities that contribute to human health. Currently available prebiotics are mostly derived from disaccharides and simple polysaccharides found in plants. Subtle differences in the structures of oligosaccharides can cause significant differences in their prebiotic properties. Therefore, alternative substances supplying polysaccharides that have more diverse and complex structures are necessary for the development of novel oligosaccharides that have actions not present in existing prebiotics. In this review, we show that structural polysaccharides found in plant cell walls, such as xylans and pectins, are particularly potential resources supplying broadly diverse polysaccharides to produce new prebiotics.

Trends in studies on probiotics, prebiotics, and synbiotics (프로바이오틱스, 프리바이오틱스 및 신바이오틱스 연구동향)

  • Moon, Gi-Seong
    • Food Science and Industry
    • /
    • v.52 no.3
    • /
    • pp.208-219
    • /
    • 2019
  • Probiotics are very closely related to gut microbiome and recognized as beneficial microorganisms for our health. They have various biological effects such as inhibition of pathogenic bacteria, activation of beneficial bacteria, prevention of diarrhea and constipation, enhanced immune activity etc. Prebiotics, non-digestible carbohydrates such as galactooligosaccharide and fructooligosaccharide, are utilized by beneficial gut bacteria such as bifidobacteria and lactobacilli, resulting in production of short chain fatty acids which inhibit pathogenic bacteria in the gut and function for human health. Synbiotics are introduced for synergistic effects when probiotics are combined with prebiotics and now commercially available. At the moment many functional ingredients are developed and commercialized. Probiotics, prebiotics, and synbiotics might be hot items in the functional food market and the values will increase according to the results of human gut microbiome researches. To meet the situation, systematic and scientific studies as well as marketing effects should be accompanied.

Synbiotics (mixture of probiotics and prebiotics) ameliorates DSS-induced ulcerative colitis in vivo.

  • Jeon, Yong-Deok;AYE, AYE;Song, Young-Jae;Kang, Sa-Haeng;Soh, Ju-Ryun;Kim, Dae-Ki;Myung, Hyun;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • /
    • pp.107-107
    • /
    • 2019
  • Ulcerative colitis (UC) is one of inflammatory bowel disease (IBD), characterized by chronic inflammatory response and dysregulation of immune function. The severity of US has been influenced by environmental factors and food habit. The immune modulatory, anti-inflammatory and steroidal medicine have been used for the treatment of UC. However, long-term administration of those medicine is accompanied with side-effect. So, it is necessary to develop the non side-effect medicine using natural product. Prebiotics influences intestinal condition and food consumption. The heredity, immunity and environmental condition are related with occurrence of UC. In recent study, UC patients had lower level of prebiotics such as Lactobacillus and Bifidobacterium compared with healthy people. Also, previous study announced that imbalance of enteric flora aggravates the severity of UC. The effectiveness of probiotics might affect colon ability and viable bacteria also could promote the proliferation of beneficial intestinal bacteria. Prebiotics, such as herbal medicine, could lead to balance of intestinal bacteria or increase beneficial bacteria. So, proper choice of herbal medicine could control the intestinal condition. This study aimed to investigate the effect of mixture of probiotics and prebiotics (synbiotics) on dextran sulfate sodium (DSS)-induced UC in vivo. The synbiotics consist of Lactobacillus buchneri, Polymnia sonchifolia and Glycine max Merr. in this study. To evaluate the effect of synbiotics, 3% DSS was administered in BALB/c mice and synbiotics was daily administered for experimental days. The administration of synbiotics regulated colon length shortening, body weight change and disease activity index effectively. Also, extract of synbiotics upregulated survival ability of Lactobacillus buchneri in gut condition. These results suggest that mixture of probiotics and prebiotics, called as synbiotics, could influence intestinal condition also regulate the colon disease. Synbiotics might be a therapeutic agent for treatment of UC.

  • PDF