• 제목, 요약, 키워드: principal component analysis (PCA)

검색결과 1,066건 처리시간 0.046초

클래스가 부가된 커널 주성분분석을 이용한 비선형 특징추출 (Nonlinear Feature Extraction using Class-augmented Kernel PCA)

  • 박명수;오상록
    • 전자공학회논문지SC
    • /
    • v.48 no.5
    • /
    • pp.7-12
    • /
    • 2011
  • 본 논문에서는 자료패턴을 분류하기에 적합한 특징을 추출하는 방법인, 클래스가 부가된 커널 주성분분석(class-augmented kernel principal component analysis)를 새로이 제안하였다. 특징추출에 널리 이용되는 부분공간 기법 중, 최근 제안된 클래스가 부가된 주성분분석(class-augmented principal component analysis)은 패턴 분류를 위한 특징을 추출하기 위해 이용되는 선형분류분석(linear discriminant analysis)등에 비해 정확한 특징을 계산상의 문제 없이 추출할 수 있는 기법이다. 그러나, 추출되는 특징은 입력의 선형조합으로 제한되어 자료에 따라 적절한 특징을 추출하기 어려운 경우가 발생한다. 이를 해결하기 위하여 클래스가 부가된 주성분분석에 커널 트릭을 적용하여 비선형 특징을 추출할 수 있는 새로운 부분공간 기법으로 확장하고, 실험을 통하여 성능을 평가하였다.

주성분 분석기법을 이용한 심전도 기반 개인인증 (ECG based Personal Authentication using Principal Component Analysis)

  • 조주희;조병준;이대종;전명근
    • 전기학회논문지P
    • /
    • v.66 no.4
    • /
    • pp.258-262
    • /
    • 2017
  • The PCA(Principal Component Analysis) algorithm is widely used as a technique of expressing the eigenvectors of the covariance matrix that best represents the characteristics of the data and reducing the high dimensional vector to a low dimensional vector. In this paper, we have developed a personal authentication method based on ECG using principal component analysis. The proposed method showed excellent recognition performance of 98.2 [%] when it was experimented using electrocardiogram data obtained at weekly intervals. Therefore, it can be seen that it is useful for personal authentication by reducing the dimension without changing the information on the variability and the correlation set variable existing in the electrocardiogram data by using the principal component analysis technique.

LMS and LTS-type Alternatives to Classical Principal Component Analysis

  • Huh, Myung-Hoe;Lee, Yong-Goo
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.233-241
    • /
    • 2006
  • Classical principal component analysis (PCA) can be formulated as finding the linear subspace that best accommodates multidimensional data points in the sense that the sum of squared residual distances is minimized. As alternatives to such LS (least squares) fitting approach, we produce LMS (least median of squares) and LTS (least trimmed squares)-type PCA by minimizing the median of squared residual distances and the trimmed sum of squares, in a similar fashion to Rousseeuw (1984)'s alternative approaches to LS linear regression. Proposed methods adopt the data-driven optimization algorithm of Croux and Ruiz-Gazen (1996, 2005) that is conceptually simple and computationally practical. Numerical examples are given.

Real-Time Small Exposed Area $SiO_2$ Films Thickness Monitoring in Plasma Etching Using Plasma Impedance Monitoring with Modified Principal Component Analysis

  • 장해규;남재욱;채희엽
    • 한국진공학회:학술대회논문집
    • /
    • /
    • pp.320-320
    • /
    • 2013
  • Film thickness monitoring with plasma impedance monitoring (PIM) is demonstrated for small area $SiO_2$ RF plasma etching processes in this work. The chamber conditions were monitored by the impedance signal variation from the I-V monitoring system. Moreover, modified principal component analysis (mPCA) was applied to estimate the $SiO_2$ film thickness. For verification, the PIM was compared with optical emission spectroscopy (OES) signals which are widely used in the semiconductor industry. The results indicated that film thickness can be estimated by 1st principal component (PC) and 2nd PC. Film thickness monitoring of small area $SiO_2$ etching was successfully demonstrated with RF plasma harmonic impedance monitoring and mPCA. We believe that this technique can be potentially applied to plasma etching processes as a sensitive process monitoring tool.

  • PDF

주성분회귀와 고유값회귀에 대한 감도분석의 성질에 대한 연구 (A study on the properties of sensitivity analysis in principal component regression and latent root regression)

  • 신재경;장덕준
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.321-328
    • /
    • 2009
  • 회귀분석에서 설명변수들 사이에 상관이 높으면 최소제곱추정법에서 구한 회귀계수들의 정도가 떨어진다. 다중공선성이라 불리는 이 현상은 실제 자료분석에서 심각한 문제를 야기시킨다. 이 다중공선성의 문제를 극복하기 위한 여러 가지 방법이 제안되었다. 능형회귀, 축소추정량 그리고 주성분분석에 기초한 주성분회귀와 고유값회귀등이 있다. 지난 수십 년간 많은 통계학자들은 일반적인 중 회귀에서 감도분석에 관해 연구하였으며, 주성분회귀, 고유값회귀와 로지스틱 주성분회귀에 대해서도 같은 주제로 연구하였다. 이 모든 방법에서 주성분분석은 중요한 역할을 하였다. 또한, 많은 통계학자들이 주성분분석과 관련된 다변량 방법에서 감도분석에 대해 연구를 하였다. 본 연구논문에서는 주성분회귀와 고유값회귀를 소개하고, 또한 주성분회귀와 고유값회귀에서 감도분석의 방법을 소개하고, 마지막으로 이들두방법에 대한 감도분석의 성질에 대해 논의하였다.

  • PDF

신경망과 주성분 분석을 이용한 심자도 신호에서 Artifact 추출 (A Study on artifact extraction in magnetocardiography using multilayer neural network and principal component analysis)

  • 이동훈;김탁용;이덕진
    • 한국컴퓨터산업교육학회:학술대회논문집
    • /
    • /
    • pp.59-64
    • /
    • 2003
  • Principal component analysis(PCA) and neural network(NN) are used in reducing external noise in magnetocadiography. The PCA technique turns out to be very effective in reducing pulse noise in some SQUID channels and the NN find noise component automatically. Some experimental results obtained from 61 channel MCG system are shown.

  • PDF

주파수공간에서의 주성분분석: 리뷰와 기상자료에의 적용 (Principal component analysis in the frequency domain: a review and their application to climate data)

  • 조유정;오희석;임예지
    • 응용통계연구
    • /
    • v.30 no.3
    • /
    • pp.441-451
    • /
    • 2017
  • 본 논문에서는 주파수공간에서의 주성분 분석을 사용하여 기상자료를 분석하고자 한다. 주파수공간에서의 주성분분석은 차원축소를 위해서도 사용되지만, 주요한 패턴을 뽑아내는 데 사용되는 통계적 방법 중 하나이다. 일반적으로 주파수공간에서의 주성분 분석은 두 가지의 방법이 있는데, Hilbert PCA와 frequency domain PCA가 그것이다. 본 논문에서는 기존의 시간공간 주성분 분석과 함께 두 가지 주파수공간 주성분 분석 방법을 비교하였다. 시뮬레이션 자료를 통하여 주파수공간 주성분 분석 방법의 유용성을 보였으며, 열대 태평양 지역의 해수표층 온도값에 주성분 분석 방법들을 적용하여 기상자료 분석에 대한 유용성을 확인하였다.

수정된 반복 주성분 분석 기법에 대한 연구 (Modified Recursive PC)

  • 김동규;김아현;김현중
    • 응용통계연구
    • /
    • v.24 no.5
    • /
    • pp.963-977
    • /
    • 2011
  • 다변량 자료를 분석함에 있어 자료의 차원을 축소하는데 활용되는 중요한 툴 중 하나인 PCA 분석(주성분 분석, Principal Component Analysis)을 실시간으로 처리해야 하는 적용 분야가 최근 늘고 있다. PCA 분석에서는 표본 공분산 행렬의 고유값과 고유벡터를 도출하는 것이 관건인데, 자료의 양이 방대하며 고차원인 경우 이를 실시간으로 수행하기에는 어려움이 따른다. 이러한 문제점을 해결하기 위해서 Erdogmus 등 (2004)는 일차 섭동 이론(first order perturbation theory)을 활용하여 공분산 행렬의 고유값과 고유벡터를 추정하는 Recursive PCA 방법을 제안했다. 이 방법은 추가된 자료의 양이 많지 않은 경우는 상당히 정확하지만, 추가된 자료의 양이 많아짐에 따라 오차도 커진다는 한계를 가지고 있다. 본 논문은 공분산 행렬의 고유값과 고유벡터가 가지고 있는 수학적 관계를 이용하여 Erdogmus 등 (2004)가 제안한 Recursive PCA 방법을 수정한 Modi ed Recursive PCA 방법을 제안하다. 또한, 모의 실험을 통해 Recursive PCA 방법과 Modi ed Recursive PCA 방법에서의 고유값과 고유벡터 추정값의 정확도를 비교해 보았으며 그 결과 기존 Recursive PCA 방법 보다 정확한 추정이 가능함을 확인할 수 있었다.

An eigenspace projection clustering method for structural damage detection

  • Zhu, Jun-Hua;Yu, Ling;Yu, Li-Li
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.179-196
    • /
    • 2012
  • An eigenspace projection clustering method is proposed for structural damage detection by combining projection algorithm and fuzzy clustering technique. The integrated procedure includes data selection, data normalization, projection, damage feature extraction, and clustering algorithm to structural damage assessment. The frequency response functions (FRFs) of the healthy and the damaged structure are used as initial data, median values of the projections are considered as damage features, and the fuzzy c-means (FCM) algorithm are used to categorize these features. The performance of the proposed method has been validated using a three-story frame structure built and tested by Los Alamos National Laboratory, USA. Two projection algorithms, namely principal component analysis (PCA) and kernel principal component analysis (KPCA), are compared for better extraction of damage features, further six kinds of distances adopted in FCM process are studied and discussed. The illustrated results reveal that the distance selection depends on the distribution of features. For the optimal choice of projections, it is recommended that the Cosine distance is used for the PCA while the Seuclidean distance and the Cityblock distance suitably used for the KPCA. The PCA method is recommended when a large amount of data need to be processed due to its higher correct decisions and less computational costs.

Predicting concrete properties using neural networks (NN) with principal component analysis (PCA) technique

  • Boukhatem, B.;Kenai, S.;Hamou, A.T.;Ziou, Dj.;Ghrici, M.
    • Computers and Concrete
    • /
    • v.10 no.6
    • /
    • pp.557-573
    • /
    • 2012
  • This paper discusses the combined application of two different techniques, Neural Networks (NN) and Principal Component Analysis (PCA), for improved prediction of concrete properties. The combination of these approaches allowed the development of six neural networks models for predicting slump and compressive strength of concrete with mineral additives such as blast furnace slag, fly ash and silica fume. The Back-Propagation Multi-Layer Perceptron (BPMLP) with Bayesian regularization was used in all these models. They are produced to implement the complex nonlinear relationship between the inputs and the output of the network. They are also established through the incorporation of a huge experimental database on concrete organized in the form Mix-Property. Thus, the data comprising the concrete mixtures are much correlated to each others. The PCA is proposed for the compression and the elimination of the correlation between these data. After applying the PCA, the uncorrelated data were used to train the six models. The predictive results of these models were compared with the actual experimental trials. The results showed that the elimination of the correlation between the input parameters using PCA improved the predictive generalisation performance models with smaller architectures and dimensionality reduction. This study showed also that using the developed models for numerical investigations on the parameters affecting the properties of concrete is promising.