• Title, Summary, Keyword: pro-inflammatory cytokines

Search Result 691, Processing Time 0.039 seconds

Modulation of Aqueous Extracted Angelicae sinensis Radix on Nitric Oxide Production and Pro-inflammatory Cytokine Gene Expressions in RAW 264.7 Macrophage Cells

  • Lee Young Sun;Han Ok Kyung;Shin Sang Woo;Park Jong Hyun;Kwon Young Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.6
    • /
    • pp.1514-1518
    • /
    • 2003
  • Angelica sinensis radix, Danggui, is a traditional oriental medication, which has been used to modulate immune response. We report here that aqueous extract of Angelica sinensis radix (ASR) can induces NO production, and inhibit LPS-induced NO production in dose-dependent manner in RAW 264.7 macrophage cells. ASR also induces iNOS mRNA and iNOS protein expression, and exhibit inhibitory effect on iNOS mRNA and protein expression in a dose-dependent manner in LPS-stimulated RAW 264.7 macrophage cells. Cytokines involved in the regulation of inflammatory reaction and immune response may play a role in the pathogenesis. ASR induces. pro-inflammatory cytokine gene expression (IL-1α, IL-1β and IL-6 gene) in a dose-dependent manner, and inhibits the expressions of these cytokines in LPS-stimulated RAW 264.7 macrophage cells. These data indicate that (1) ASR may be a potential therapeutic modulator of NO synthesis in various pathological conditions, and (2) the immunomodulatory effects of ASR may be, in part, associated with the inducing or suppression of pro-inflammatory cytokine gene expressions.

The Role of Nrf2 in Cellular Innate Immune Response to Inflammatory Injury

  • Kim, Ji-Young;Surh, Young-Joon
    • Toxicological Research
    • /
    • v.25 no.4
    • /
    • pp.159-173
    • /
    • 2009
  • Nuclear factor erythroid derived 2-related factor-2 (Nrf2) is a master transcription regulator of antioxidant and cytoprotective proteins that mediate cellular defense against oxidative and inflammatory stresses. Disruption of cellular stress response by Nrf2 deficiency causes enhanced susceptibility to infection and related inflammatory diseases as a consequence of exacerbated immune-mediated hypersensitivity and autoimmunity. The cellular defense capacity potentiated by Nrf2 activation appears to balance the population of $CD4^+$ and $CD8^+$ of lymph node cells for proper innate immune responses. Nrf2 can negatively regulate the activation of pro-inflammatory signaling molecules such as p38 MAPK, NF-${\kappa}B$, and AP-1. Nrf2 subsequently functions to inhibit the production of pro-inflammatory mediators including cytokines, chemokines, cell adhesion molecules, matrix metalloproteinases, COX-2 and iNOS. Although not clearly elucidated, the antioxidative function of genes targeted by Nrf2 may cooperatively regulate the innate immune response and also repress the expression of pro-inflammatory mediators.

Anti-Inflammatory Effect of Fermented Liriope platyphylla Extract in LPS-stimulated RAW 264.7 Macrophages

  • Lee, Hyun-Ah;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.299-306
    • /
    • 2011
  • The present study was designed to evaluate the inhibitory effects of fermented Liriope platyphylla extract on the production of inflammation-related mediators (NO, ROS, NF-${\kappa}B$, iNOS and COX-2) and pro-inflammatory cytokines (TNF-${\alpha}$, IL-$1{\beta}$, IL-6) in lipopolysaccharide-stimulated RAW 264.7 macrophages. Freeze-dried Liriope platyphylla was fermented by Saccharomyces cerevisiae and extracted with 70% ethanol. In lipopolysaccharide-stimulated macrophage cells, the treatment with fermented Liriope platyphylla extract decreased the generation of intracellular reactive oxygen species dose-dependently and increased antioxidant enzyme activities, including superoxide dismutase, catalase and glutathione peroxidase. Fermented Liriope platyphylla extract also inhibited NO production in lipopolysaccharide-stimulated RAW 264.7 cell. The expressions of NF-${\kappa}B$, iNOS, COX-2 and pro-inflammatory cytokines were inhibited by the treatment with fermented Liriope platyphylla extract. Thus, this study shows the fermented Liriope platyphylla extract could be effective at inhibiting the inflammation process.

The Extract of Gleditsiae Spina Inhibits Mast Cell-Mediated Allergic Reactions Through the Inhibition of Histamine Release and Inflammatory Cytokine Production

  • Shin, Tae-Yong
    • Natural Product Sciences
    • /
    • v.16 no.3
    • /
    • pp.185-191
    • /
    • 2010
  • Mast cell-mediated allergic disease is involved in many diseases such as anaphylaxis, asthma and atopic dermatitis. The discovery of drugs for the treatment of allergic disease is an important subject in human health. In the present study, the effect of water extract of Gleditsiae Spina (WGS) (Leguminosae), on compound 48/80-induced systemic allergic reaction, anti-DNP IgE antibody-induced local allergic reaction, and histamine release from human mast cell line (HMC-1) cells were studied. In addition, the effect of WGS on phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187 (A23187)-induced gene expression and secretion of pro-inflammatory cytokines were investigated using HMC-1 cells. WGS was anally administered to mice for high and fast absorption. WGS inhibited compound 48/80-induced systemic allergic reaction. WGS dose-dependently decreased the IgE-mediated passive cutaneous anaphylaxis. WGS reduced histamine release from HMC-1 cells. In addition, WGS decreased the gene expression and secretion of pro-inflammatory cytokines in PMA plus A23187-stimulated HMC-1 cells. These findings provide evidence that WGS could be a candidate as an antiallergic agent.

Erythromycin Inhibits Interleukin-6 and Interleukin-8 Expression and Promotes Apoptosis of Activated Human Neutrophils in Vitro

  • Baik, A-Rom;Lee, Jong-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.6
    • /
    • pp.259-262
    • /
    • 2007
  • Diffuse panbronchiolitis (DPB) is a pulmonary disease characterized by chronic inflammation of the bronchioles and chronic infiltration of inflammatory cells in the lungs. Macrolides are effective therapeutic agents for chronic respiratory tract diseases, such as DPB. However, the mechanisms by which macrolides modulate the immune responses in patients with DPB remain unclear. To understand clinical efficacy for the treatment of DPB by macrolides, the effects of erythromycin (EM) on the expression of pro-inflammatory cytokines such as interleukin-6 (IL-6) and interleukin-8 (IL-8) by human neutrophils were examined. Pre-treatment with EM significantly decreased the expression of IL-6 and IL-8 transcripts by lipopolysaccharide (LPS)-stimulated human neutrophils. EM also reversed the enhanced survival of human neutrophils by LPS. These data indicate that EM has achieved therapeutic effect for patients with DPB, in part, through decreasing the expression of pro-inflammatory cytokines and the survival of neutrophils.

MicroRNA-22 negatively regulates LPS-induced inflammatory responses by targeting HDAC6 in macrophages

  • Youn, Gi Soo;Park, Jong Kook;Lee, Chae Yeon;Jang, Jae Hee;Yun, Sang Ho;Kwon, Hyeok Yil;Choi, Soo Young;Park, Jinseu
    • BMB Reports
    • /
    • v.53 no.4
    • /
    • pp.223-228
    • /
    • 2020
  • Dysregulation of histone deacetylase 6 (HDAC6) can lead to the pathologic states and result in the development of various diseases including cancers and inflammatory diseases. The objective of this study was to elucidate the regulatory role of microRNA-22 (miR-22) in HDAC6-mediated expression of pro-inflammatory cytokines in lipopolysaccharide (LPS)-stimulated macrophages. LPS stimulation induced HDAC6 expression, but suppressed miR-22 expression in macrophages, suggesting possible correlation between HDAC6 and miR-22. Luciferase reporter assays revealed that 3'UTR of HDAC6 was a bona fide target site of miR-22. Transfection of miR-22 mimic significantly inhibited LPS-induced HDAC6 expression, while miR-22 inhibitor further increased LPS-induced HDAC6 expression. LPS-induced activation of NF-κB and AP-1 was inhibited by miR-22 mimic, but further increased by miR-22 inhibitor. LPS-induced expression of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 was inhibited by miR-22 mimic, but further increased by miR-22 inhibitor. Taken together, these data provide evidence that miR-22 can downregulate LPS-induced expression of pro-inflammatory cytokines via suppression of NF-κB and AP-1 axis by targeting HDAC6 in macrophages.

Anti-inflammatory effects of Rubus coreanus Miquel through inhibition of NF-${\kappa}B$ and MAP Kinase

  • Lee, Jung Eun;Cho, Soo-Muk;Park, Eunkyo;Lee, Seung Min;Kim, Yuri;Auh, Joong Hyuck;Choi, Hyung-Kyoon;Lim, Sohee;Lee, Sung Chul;Kim, Jung-Hyun
    • Nutrition Research and Practice
    • /
    • v.8 no.5
    • /
    • pp.501-508
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Rubus Coreanus Miquel (RCM), used as a traditional Korean medicine, reduces chronic inflammatory diseases such as cancer and rheumatoid arthritis. However, its mechanism has not been elucidated. In this study, we examine the anti-inflammatory effects of RCM and their possible mechanisms using RAW 264.7 cells. MATERIALS/METHODS: Unripe RCM ethanol extract (UE), unripe RCM water extract (UH), ripe RCM ethanol extract (RE), and ripe RCM water extract (RH) were prepared. Inflammatory response was induced with LPS treatment, and expression of pro-inflammatory mediators (iNOS, COX-2, TNF-${\alpha}$, IL-$1{\beta}$, and IL-6) and NO and $PGE_2$ productions were assessed. To determine the anti-inflammatory mechanism of RCM, we measured NF-${\kappa}B$ and MAPK activities. RESULTS: UE and UH treatment significantly reduced NF-${\kappa}B$ activation and JNK and p38 phosphorylation and reduced transcriptional activities decreased iNOS, COX-2, and pro-inflammatory cytokines expressions, and NO and $PGE_2$ productions. RE and RH treatments reduced IL-$1{\beta}$ and IL-6 expressions through suppressions of JNK and p38 phosphorylation. CONCLUSIONS: In this study, we showed that RCM had anti-inflammatory effects by suppression of pro-inflammatory mediator expressions. Especially, unripe RCM showed strong anti-inflammatory effects through suppression of NF-${\kappa}B$ and MAPK activation. These findings suggest that unripe RCM might be used as a potential functional material to reduce chronic inflammatory responses.

The Anti-Inflammatory Effect of Lonicera Japonica-Glycyrrhiza Uralensis Decoction on Ulcerative Colitis Induced by DSS in Mice (항염증조절을 통한 금은화-감초 복합 추출물의 DSS 유도 궤양성 대장염 완화 효과)

  • Lee, Yeon Woo;Ahn, Sang Hyun;Kim, Ho Hyun;Kim, Kibong
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.32 no.3
    • /
    • pp.16-25
    • /
    • 2018
  • Objectives The purpose of this study is to investigate the anti-inflammatory effect of Lonicera Japonica-Glycyrrhiza Uralensis decoction extracts (LGE) on ulcerative colitis in children and adolescents. Methods Colitis was induced by DSS (Dextran Sulfate Sodium) in C57BL/6 mice. The sample mice were divided into group of four. The mice in the control group were not inflammation-induced. The control group was composed of untreated ulcerative colitis elicited mice. The mice in the experimental group were administered with Pentasa and another experimental group mice were treated with LGE after colitis elicitation. The effects on ulcerative colitis were evaluated by the morphological changes of colonic mucosa, decrease in the effect of pro-inflammatory cytokines ($TNF-{\alpha}$ and $NF-{\kappa}B$) and inflammatory cytokines (iNOS and COX-2) in the mucosa. Results LGE showed protective effects in DSS induced ulcerative colitis. LGE inhibited shortening of colon length and relieved the hemorrhagic erosion in colonic mucosa. LGE decreased pro-inflammatory cytokines ($TNF-{\alpha}$ and $NF-{\kappa}B$) and inflammatory cytokines (iNOS and COX-2). According to the GC/MS analysis, N-methyl pyrrolidone (NMP) was identified. Conclusions The result shows the clinical efficacy of LGE and demonstrates possible treatment options for ulcerative colitis. Further investigations for biological activity and chemical analysis of LGE will be needed.

Inhibitory Effect of Salvia officinalis on the Inflammatory Cytokines and Inducible Nitric Oxide Synthasis in Murine Macrophage RAW264.7 (RAW 264.7 Cell에서 세이지에 의한 염증성 Cytokine 및 iNOS억제 효과)

  • 현은아;이혜자;윤원종;박수영;강희경;김세재;유은숙
    • YAKHAK HOEJI
    • /
    • v.48 no.2
    • /
    • pp.159-164
    • /
    • 2004
  • Primary pro-inflammatory cytokines are a trio: tumor necrosis- $\alpha$ (TNF-$\alpha$), interleukine-$\beta$ (IL-$\beta$), and interleukine-6 (IL-6). These cytokines initiate and regulate the acute-phase inflammatory response during infection, trauma, or stress and appear to play an important role in the immune process. Nitric oxide (NO) is a multi-functional mediator, which plays an important role in regulating various biological functions in vivo. NO production by inducible nitric oxide synthase (iNOS) in macrophages is essential for the defense mechanisms against microorganisms and tumor cells. However, over-expression of iNOS by various stimuli, resulting in over-production of NO, contributes to the pathogenesis of septic shock and some inflammatory and auto-immune disease. Solvent fractions of sage ( Salvia officinalis L.), which is cultivated in Jeju-Do, was assayed for their effects on TNF-$\alpha$ and IL-6 production in LPS-stimulated RAW 264.7 macrophages. Hexane and ethylacetate (EtOAc) fraction of sage inhibited the protein and mRNA expression of TNF-$\alpha$ and IL-6 in LPS stimulated RAW 264.7 cells at the concentration of 100 $\mu\textrm{g}$/$m\ell$. Also, incubation of RAW 264.7 cells with the fraction of hexane or EtOAc (50 $\mu\textrm{g}$/$m\ell$) inhibited the LPS induced nitrite accumulation and the LPS/IFN-${\gamma}$ induced iNOS protein. And this inhibition of iNOS protein is concordant with the inhibition of iNOS mRNA expression. Above results suggest that extract of sage may have anti-inflammatory activity through the inhibition of pro-inflammatory cytokines (TNF-$\alpha$, IL-1$\beta$, IL-6), iNOS and NO.

The Study on Biological Activities of Yeonsan Ogye listed on Dong-ui-bo-gam (동의보감에 수재된 오계(烏鷄)에 대한 생리활성 연구)

  • Kim, Jin-Woo;Sim, Boo-Yong;Choi, Hak-Joo;Lee, Hea-Jin;Kim, Dong-Hee
    • The Korea Journal of Herbology
    • /
    • v.30 no.5
    • /
    • pp.23-28
    • /
    • 2015
  • Objectives : The aim of this study is to investigate cell viability, anti-inflammatory, antioxidant, immunoenhancing activity using various extracts of Yeonsan Ogye.Methods : In order to evaluate cytotoxicity, MTT assay was performed. We investigated production levels of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-αand interleukin (IL)-6, and nitric oxide(NO) in LPS-induced RAW 264.7 cells. NO production in RAW 264.7 cells was measured by using Griess reagent. Cytokines including IL-6 and TNF-αwere measured by Luminex and ROS was measured by Flow cytometry.Results : No cytotoxicity of various extracts of Yeonsan Ogye was observed in RAW 264.7 cells. Productions of ROS in RAW 264.7 cells were increased from extraction of bones and decreased from extraction of skin. Also, productions of NO in RAW 264.7 cells were increased to bone extract and decreased at skin extract. In addition, productions of pro-inflammatory cytokines (IL-6 and TNF-α) in LPS-induced RAW 264.7 cells were decreased at skin, meat extracts, respectively. Finally, the levels of immune-related cytokines (IL-6 and TNF-α) were increased compared to those of the normal group.Conclusions : It is concluded that Yeonsan Ogye extracts seem to have significant biological activities likes anti-inflammatory, antioxidant, immuno-enhancing etc. These results may be developed as a raw material for new health food and new therapeutics to ease the symptoms related with inflammatory and oxidative stress. In terms of oriental traditional medicine, we expect that it contribute to building of EBM (Evidence-Based Medicine) from the this result.