• Title, Summary, Keyword: protein-protein Interaction prediction

Search Result 58, Processing Time 0.038 seconds

Prediction Accuracy Evaluation of Domain and Domain Combination Based Prediction Methods for Protein-Protein Interaction

  • Han, Dong-Soo;Jang, Woo-Hyuk
    • Bioinformatics and Biosystems
    • /
    • v.1 no.2
    • /
    • pp.128-133
    • /
    • 2006
  • This paper compares domain combination based protein-protein interaction prediction method with domain based protein-protein interaction method. The prediction accuracy and reliability of the methods are compared using the same prediction technique and interaction data. According to the comparison, domain combination based prediction method has showed superior prediction accuracy to domain based prediction method for protein pairs with fully overlapped domains with protein pairs in learning sets. When we consider that domain combination based method has the effects of assigning a weight to each domain interaction, it implies that we can improve the prediction accuracies of currently available domain or domain combination based protein interaction prediction methods further by developing more advanced weight assignment techniques. Several significant facts revealed from the comparative studies are also described in this paper.

  • PDF

Fucntional Prediction Method for Proteins by using Modified Chi-square Measure (보완된 카이-제곱 기법을 이용한 단백질 기능 예측 기법)

  • Kang, Tae-Ho;Yoo, Jae-Soo;Kim, Hak-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.332-336
    • /
    • 2009
  • Functional prediction of unannotated proteins is one of the most important tasks in yeast genomics. Analysis of a protein-protein interaction network leads to a better understanding of the functions of unannotated proteins. A number of researches have been performed for the functional prediction of unannotated proteins from a protein-protein interaction network. A chi-square method is one of the existing methods for the functional prediction of unannotated proteins from a protein-protein interaction network. But, the method does not consider the topology of network. In this paper, we propose a novel method that is able to predict specific molecular functions for unannotated proteins from a protein-protein interaction network. To do this, we investigated all protein interaction DBs of yeast in the public sites such as MIPS, DIP, and SGD. For the prediction of unannotated proteins, we employed a modified chi-square measure based on neighborhood counting and we assess the prediction accuracy of protein function from a protein-protein interaction network.

Development and Application of Protein-Protein interaction Prediction System, PreDIN (Prediction-oriented Database of Interaction Network)

  • 서정근
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • /
    • pp.5-23
    • /
    • 2002
  • Motivation: Protein-protein interaction plays a critical role in the biological processes. The identification of interacting proteins by bioinformatical methods can provide new lead In the functional studies of uncharacterized proteins without performing extensive experiments. Results: Protein-protein interactions are predicted by a computational algorithm based on the weighted scoring system for domain interactions between interacting protein pairs. Here we propose potential interaction domain (PID) pairs can be extracted from a data set of experimentally identified interacting protein pairs. where one protein contains a domain and its interacting protein contains the other. Every combinations of PID are summarized in a matrix table termed the PID matrix, and this matrix has proposed to be used for prediction of interactions. The database of interacting proteins (DIP) has used as a source of interacting protein pairs and InterPro, an integrated database of protein families, domains and functional sites, has used for defining domains in interacting pairs. A statistical scoring system. named "PID matrix score" has designed and applied as a measure of interaction probability between domains. Cross-validation has been performed with subsets of DIP data to evaluate the prediction accuracy of PID matrix. The prediction system gives about 50% of sensitivity and 98% of specificity, Based on the PID matrix, we develop a system providing several interaction information-finding services in the Internet. The system, named PreDIN (Prediction-oriented Database of Interaction Network) provides interacting domain finding services and interacting protein finding services. It is demonstrated that mapping of the genome-wide interaction network can be achieved by using the PreDIN system. This system can be also used as a new tool for functional prediction of unknown proteins.

  • PDF

A Domain Combination Based Probabilistic Framework for Protein-Protein Interaction Prediction (도메인 조합 기반 단백질-단백질 상호작용 확률 예측기법)

  • Han, Dong-Soo;Seo, Jung-Min;Kim, Hong-Soog;Jang, Woo-Hyuk
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • /
    • pp.7-16
    • /
    • 2003
  • In this paper, we propose a probabilistic framework to predict the interaction probability of proteins. The notion of domain combination and domain combination pair is newly introduced and the prediction model in the framework takes domain combination pair as a basic unit of protein interactions to overcome the limitations of the conventional domain pair based prediction systems. The framework largely consists of prediction preparation and service stages. In the prediction preparation stage, two appearance pro-bability matrices, which hold information on appearance frequencies of domain combination pairs in the interacting and non-interacting sets of protein pairs, are constructed. Based on the appearance probability matrix, a probability equation is devised. The equation maps a protein pair to a real number in the range of 0 to 1. Two distributions of interacting and non-interacting set of protein pairs are obtained using the equation. In the prediction service stage, the interaction probability of a protein pair is predicted using the distributions and the equation. The validity of the prediction model is evaluated fur the interacting set of protein pairs in Yeast organism and artificially generated non-interacting set of protein pairs. When 80% of the set of interacting protein pairs in DIP database are used as foaming set of interacting protein pairs, very high sensitivity(86%) and specificity(56%) are achieved within our framework.

  • PDF

Protein-Protein Interaction Prediction using Interaction Significance Matrix (상호작용 중요도 행렬을 이용한 단백질-단백질 상호작용 예측)

  • Jang, Woo-Hyuk;Jung, Suk-Hoon;Jung, Hwie-Sung;Hyun, Bo-Ra;Han, Dong-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.10
    • /
    • pp.851-860
    • /
    • 2009
  • Recently, among the computational methods of protein-protein interaction prediction, vast amounts of domain based methods originated from domain-domain relation consideration have been developed. However, it is true that multi domains collaboration is avowedly ignored because of computational complexity. In this paper, we implemented a protein interaction prediction system based the Interaction Significance matrix, which quantified an influence of domain combination pair on a protein interaction. Unlike conventional domain combination methods, IS matrix contains weighted domain combinations and domain combination pair power, which mean possibilities of domain collaboration and being the main body on a protein interaction. About 63% of sensitivity and 94% of specificity were measured when we use interaction data from DIP, IntAct and Pfam-A as a domain database. In addition, prediction accuracy gradually increased by growth of learning set size, The prediction software and learning data are currently available on the web site.

Graph-based modeling for protein function prediction (단백질 기능 예측을 위한 그래프 기반 모델링)

  • Hwang Doosung;Jung Jae-Young
    • The KIPS Transactions:PartB
    • /
    • v.12B no.2
    • /
    • pp.209-214
    • /
    • 2005
  • The use of protein interaction data is highly reliable for predicting functions to proteins without function in proteomics study. The computational studies on protein function prediction are mostly based on the concept of guilt-by-association and utilize large-scale interaction map from revealed protein-protein interaction data. This study compares graph-based approaches such as neighbor-counting and $\chi^2-statistics$ methods using protein-protein interaction data and proposes an approach that is effective in analyzing large-scale protein interaction data. The proposed approach is also based protein interaction map but sequence similarity and heuristic knowledge to make prediction results more reliable. The test result of the proposed approach is given for KDD Cup 2001 competition data along with those of neighbor-counting and $\chi^2-statistics$ methods.

Modular neural network in prediction of protein function (단위 신경망을 이용한 단백질 기능 예측)

  • Hwang Doo-Sung
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1
    • /
    • pp.1-6
    • /
    • 2006
  • The prediction of protein function basically make use of a protein-protein interaction map based on the concept of guilt-by-association. The method however cannot determine the functions of proteins in case that the target protein does not interact with proteins with known functions directly. This paper studies protein function prediction considering the given problem as a K-class classification problem and proposes a predictive approach utilizing a modular neural network. The proposed method uses interaction data and protein related attributes as well. The experimental results demonstrate that the proposed approach can predict the functional roles of Yeast proteins whose interaction knowledge is not known and shows better performance than the graph-based models that use protein interaction data.

PreSPI: Protein-Protein Interaction Prediction Service System (PreSPI: 단백질 상호작용 예측 서비스 시스템)

  • Han Dong-Soo;Kim Hong-Soog;Jang Woo-Hyuk;Lee Sung-Doke
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.6
    • /
    • pp.503-513
    • /
    • 2005
  • With the recognition of the importance of computational approach for protein-protein interaction prediction, many techniques have been developed to computationally predict protein-protein interactions. However, few techniques are actually implemented and announced in service form for general users to readily access and use the techniques. In this paper, we design and implement a protein interaction prediction service system based on the domain combination based protein-protein interaction prediction technique, which is known to show superior accuracy to other conventional computational protein-protein interaction prediction methods. In the prediction accuracy test of the method, high sensitivity($77\%$) and specificity($95\%$) are achieved for test protein pairs containing common domains with teaming sets of proteins in a Yeast. The stability of the method is also manifested through the testing over DIP CORE, HMS-PCI, and TAP data. Performance, openness and flexibility are the major design goals and they are achieved by adopting parallel execution techniques, web Services standards, and layered architecture respectively. In this paper, several representative user interfaces of the system are also introduced with comprehensive usage guides.

Protein Interaction Possibility Ranking Method based on Domain Combination (도메인 조합 기반 단백질 상호작용 가능성 순위 부여 기법)

  • Han Dong-Soo;Kim Hong-Song;Jong Woo-Hyuk;Lee Sung-Doke
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.5
    • /
    • pp.427-435
    • /
    • 2005
  • With the accumulation of protein and its related data on the Internet, many domain based computational techniques to predict protein interactions have been developed. However, most of the techniques still have many limitations to be used in real fields. They usually suffer from a low accuracy problem in prediction and do not provide any interaction possibility ranking method for multiple protein pairs. In this paper, we reevaluate a domain combination based protein interaction prediction method and develop an interaction possibility ranking method for multiple protein pairs. Probability equations are devised and proposed in the framework of domain combination based protein interaction prediction method. Using the ranking method, one can discern which protein pair is more probable to interact with each other than other protein pairs in multiple protein pairs. In the validation of the ranking method, we revealed that there exist some correlations between the interacting probability and the precision of the prediction in case of the protein pair group having the matching PIP(Primary Interaction Probability) values in the interacting or non interacting PIP distributions.

A Domain Combination-based Probabilistic Framework for Protein-Protein Interaction Prediction (도메인 조합 기반 단백질-단백질 상호작용 확률 예측 틀)

  • 한동수;서정민;김홍숙;장우혁
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.4
    • /
    • pp.299-308
    • /
    • 2004
  • In this paper, we propose a probabilistic framework to predict the interaction probability of proteins. The notion of domain combination and domain combination pair is newly introduced and the prediction model in the framework takes domain combination pair as a basic unit of protein interactions to overcome the limitations of the conventional domain pair based prediction systems. The framework largely consists of prediction preparation and service stages. In the prediction preparation stage, two appearance probability matrices, which hold information on appearance frequencies of domain combination pairs in the interacting and non-interacting sets of protein pairs, are constructed. Based on the appearance probability matrix, a probability equation is devised. The equation maps a protein pair to a real number in the range of 0 to 1. Two distributions of interacting and non-interacting set of protein pairs are obtained using the equation. In the prediction service stage, the interaction probability of a Protein pair is predicted using the distributions and the equation. The validity of the prediction model is evaluated for the interacting set of protein pairs in Yeast organism and artificially generated non-interacting set of protein pairs. When 80% of the set of interacting protein pairs in DIP database are used as teaming set of interacting protein pairs, very high sensitivity(86%) and specificity(56%) are achieved within our framework.