• Title, Summary, Keyword: quantum dynamical semigroup

Search Result 2, Processing Time 0.033 seconds

QUANTUM DYNAMICAL SEMIGROUP AND ITS ASYMPTOTIC BEHAVIORS

  • Choi, Veni
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.189-198
    • /
    • 2004
  • In this study we consider quantum dynamical semi-group with a normal faithful invariant state. A quantum dynamical semigroup $\alpha\;=\;\{{\alpha}_t\}_{t{\geq}0}$ is a class of linear normal identity-preserving mappings on a von Neumann algebra M with semigroup property and some positivity condition. We investigate the asymptotic behaviors of the semigroup such as ergodicity or mixing properties in terms of their eigenvalues under the assumption that the semigroup satisfies positivity. This extends the result of [13] which is obtained under the assumption that the semi group satisfy 2-positivity.

RECONSTRUCTION THEOREM FOR STATIONARY MONOTONE QUANTUM MARKOV PROCESSES

  • Heo, Jae-Seong;Belavkin, Viacheslav P.;Ji, Un Cig
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.63-74
    • /
    • 2012
  • Based on the Hilbert $C^*$-module structure we study the reconstruction theorem for stationary monotone quantum Markov processes from quantum dynamical semigroups. We prove that the quantum stochastic monotone process constructed from a covariant quantum dynamical semigroup is again covariant in the strong sense.