• Title, Summary, Keyword: quasinilpotent part

Search Result 2, Processing Time 0.035 seconds


  • Rashid, Mohammad H.M.
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.661-676
    • /
    • 2017
  • Let T be a bounded linear operator acting on a complex Hilbert space ${\mathfrak{H}}$. In this paper we introduce the class, denoted ${\mathcal{Q}}(A(k),m)$, of operators satisfying $T^{m{\ast}}(T^{\ast}{\mid}T{\mid}^{2k}T)^{1/(k+1)}T^m{\geq}T^{{\ast}m}{\mid}T{\mid}^2T^m$, where m is a positive integer and k is a positive real number and we prove basic structural properties of these operators. Using these results, we prove that if P is the Riesz idempotent for isolated point ${\lambda}$ of the spectrum of $T{\in}{\mathcal{Q}}(A(k),m)$, then P is self-adjoint, and we give a necessary and sufficient condition for $T{\otimes}S$ to be in ${\mathcal{Q}}(A(k),m)$ when T and S are both non-zero operators. Moreover, we characterize the quasinilpotent part $H_0(T-{\lambda})$ of class A(k) operator.