• Title, Summary, Keyword: radial limit set

Search Result 6, Processing Time 0.036 seconds

CONFORMAL DENSITY OF VISIBILITY MANIFOLD

  • Kim, Hyun-Jung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.211-222
    • /
    • 2001
  • In this paper, we prove the existence and uniqueness of a $\delta(\Gamma)$-conformal density on the limit set of $\Gamma$ acting on visibility manifold H for a Fuchsian group $\Gamma$.

  • PDF

Development of MR Mount for Vibration Control of Marine Diesel-Generator Set (박용 발전기세트 진동 제어용 MR 마운트 개발)

  • Kang, Ok-Hyun;Kim, Won-Hyun;Joo, Won Ho;Park, Jun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.381-385
    • /
    • 2014
  • This paper investigates the magneto-rheological(MR) mount for the marine diesel-generator(D/G) sets. Sometimes, significant vibrations over the allowable limit are observed on the D/G sets due to their huge excitation forces. Because the severe vibration can lead to structural damages to the D/G sets, it should be reduced below the limit. Although passive mounts with rubber isolators are usually used, the vibration reduction performance is not always sufficient. In addition, expecting that the vibration levels required by customers will get more severe, vibration reduction devices need to be developed. To the aim, the flow mode type of MR mount has been designed. Especially, the annular-radial configuration was adopted to enhance the damping force within the restricted space. The geometry of the mount has been optimized to obtain the required damping force and the magnetic field analysis has been carried out using ANSYS APDL. To verify the performance of the developed MR mount, an excitation test was conducted. In addition, they were applied to a medium-speed diesel generator and it was verified that about 40% of vibration reduction was yielded.

  • PDF

Performance of Continuous-wave Coherent Doppler Lidar for Wind Measurement

  • Jiang, Shan;Sun, Dongsong;Han, Yuli;Han, Fei;Zhou, Anran;Zheng, Jun
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.466-472
    • /
    • 2019
  • A system for continuous-wave coherent Doppler lidar (CW lidar), made up of all-fiber structures and a coaxial transmission telescope, was set up for wind measurement in Hefei (31.84 N, 117.27 E), Anhui province of China. The lidar uses a fiber laser as a light source at a wavelength of $1.55{\mu}m$, and focuses the laser beam on a location 80 m away from the telescope. Using the CW lidar, radial wind measurement was carried out. Subsequently, the spectra of the atmospheric backscattered signal were analyzed. We tested the noise and obtained the lower limit of wind velocity as 0.721 m/s, through the Rayleigh criterion. According to the number of Doppler peaks in the radial wind spectrum, a classification retrieval algorithm (CRA) combining a Gaussian fitting algorithm and a spectral centroid algorithm is designed to estimate wind velocity. Compared to calibrated pulsed coherent wind lidar, the correlation coefficient for the wind velocity is 0.979, with a standard deviation of 0.103 m/s. The results show that CW lidar offers satisfactory performance and the potential for application in wind measurement.

A Study on the tire structure-borne sound (타이어 구조 진동음에 관한 연구)

  • Chi, Chang-Heon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.80-91
    • /
    • 1995
  • A theoretical models has been prepared which describes the noise generated by tire/road interaction for the tire structure-borne sound analysis. The model begin with a set of thin shell equations describing the motion of the belt of a radial ply tire, as drived by Bohm('mechanisms of the belted tire', Igeniur-Archiv, XXXV, 1966). Structural quantities required for these equations are derived from material properties of the tire. The rolling shape of a tire is computed from the steady-state limit of these equations. Vibrational response of the tire is treated by the full dependent shell equations. The force input at the tire/road interface is calculated on the basis of tread geometry and distribution of contact patch pressure. Radiation of noise is calculated by a simpson integral. Using the programs, the effect on noise of various tire design variations is computed and discussed. Trends which lead to quiet tire design are identified.

  • PDF

A Study on the Combustion Characteristics of Lean Mixture by Radicals Induced Injection in a Constant Volume Combustor (1) (정적연소기에서 라디칼 유도분사를 이용한 희박혼합기의 연소특성에 관한 연구 (1))

  • 박종상;이태원;하종률;정성식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 2004
  • An experimental study was carried out to obtain the fundamental data about the effects of radicals induced injection on premixture combustion. A constant volume combustor divided to the sub-chamber and the main chamber was used. The volume of the sub-chamber is set up to occupy less than 1.5% of that of whole combustion chamber. Radial twelve narrow passage holes are arranged between the main chamber and the sub-chamber. The products including radicals generated by spark ignition in the sub-chamber will derive the simultaneous multi-point ignition in the main chamber. While the equivalence ratio of pre-mixture in the main chamber and the sub-chamber is uniform. We have examined the effects of the sub-chamber volume, the diameter of passage hole, and the equivalence ratio on the combustion characteristics by means of burning pressure measurement and flame visualization. In the case of radical ignition method(RI), the overall turning time including the ignition delay became very short and the maximum burning pressure was slightly increased in comparison with those of the conventional spark ignition method(SI), that is, single chamber combustion without the sub-chamber. The combustible lean limit by RI method is extended to more ER=0.25 than that by SI method. Therefore the decrease of every emission including NOx and the improvement of fuel consumption is anticipated due to lean burn.

Analysis of Whole Tunnel Stability by Using Rock Mass Classification and Mohr-Coulomb Analytical Solution (암반분류와 Mohr-Coulomb 이론해를 이용한 터널 전구간 안정성 분석)

  • Jung, Yong-Bok;Park, Eui-Seob;Ryu, Dong-Woo;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.280-287
    • /
    • 2013
  • Finite element or difference methods are applied to the analysis of the tunnel stability and they provide detailed behaviour of analyzed tunnel sections but it is rather inefficient to analyze all the section of tunnel by using these methods. In this study, the authors suggest a new stability analysis method for whole tunnel to provide an efficient and easy way to understand the behaviour of whole tunnel by using an analytical solution with the assumption of equivalent circular tunnel. The mechanical behaviour, radial strain and plastic zone radius of whole tunnel were analyzed and appropriate support pressure to maintain the displacement within the allowable limit was suggested after the application of this method to the tunnel. Consequently, it was confirmed that this method can provide quick analysis of the whole tunnel stability and the quantitative information for subsequent measures such as selection of tunnel sections for detailed numerical analysis, set up of the monitoring plan, and so on.