• Title, Summary, Keyword: reinforced concrete beam

Search Result 1,425, Processing Time 0.038 seconds

Fatigue Behavior of Reinforced Dual Concrete Beam (철근 이중 콘크리트 보의 피로 거동)

  • Park, Tae-Hyo;Lee, Sang-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • /
    • pp.37-40
    • /
    • 2005
  • Reinforced dual concrete beam (RDC beam) is the reformed system that improves the overall structural properties of beam by partially applying high performance steel fiber reinforced concrete (HPSFRC) in the lower tension part of conventional reinforced concrete beam (RC beam). Fatigue test was done to prove the structural superiority of RDC beam. As a result of fatigue test, the deflection of RDC beam was decreased obviously and the slope of number of cycle-deflection relation curve of RDC beam was increased gently in comparison with RC beam.

  • PDF

Structural Behavior of Beam-Column Joints Consisting of Composite Structures

  • Lee, Seung-Jo;Park, Jung-Min;Kim, Wha-Jung
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.111-120
    • /
    • 2002
  • This study proposes a joint model consisting of different types of members as a new structural system, and then investigates the resulting structural behavior. The joint model consists of a concrete-filled steel tube column (CFT) together with a steel reinforced concrete at the end plus reinforced concrete beam at the center. For comparison, two other joint models were designed, that are, a CPT with a reinforced concrete beam, and a CFT with a steel reinforced concrete at the end plus steel concrete beam at the center, then their joint capacity and rigidity, energy absorption capacity, etc., were all investigated. From the results, the CFT column with a steel reinforced concrete at the end plus steel concrete beam at the center was outstanding in terms of its capacity and rigidity. The results of this analysis demonstrate that an adequate connection type and reinforcement method with different materials of increasing the rigidity, thereby producing a capacity improvement along with protection from pre-fractures.

  • PDF

Design Aids for a Reinforced Concrete Beam with the Minimum Cost Concept

  • Park, Dalsoo;Ahn, Jeehyun;Lee, Chadon
    • Architectural research
    • /
    • v.1 no.1
    • /
    • pp.55-61
    • /
    • 1999
  • In reinforced concrete design, structural member sizes and amount of reinforcing steel areas are usually selected based on the structural designers' experience. Most existing charts provided for the design of reinforced concrete structural members were developed mainly based on force equilibrium conditions and some serviceability criteria. Sections selected from these charts may not result in an economic solution in terms of material costs as well as construction costs. Practical design aids are developed and suggested in this study for the economical design of reinforced concrete beam under flexural loading. With the beam width fixed, the depth of a beam, positive steel areas and negative steel areas are found from Khun-Tucker necessary conditions with Lagrangian multipliers to minimize the sectional cost of a beam. The developed design aids might be useful in selecting optimum reinforced concrete beam sections. Theoretical derivations and use of the developed design aids are described in this paper.

  • PDF

Fiber method analysis of rc beam retrofitted with turnbuckle external post-tensioning

  • Lejano, Bernardo A.
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.67-86
    • /
    • 2016
  • Strengthening as well as correcting unsightly deflections of reinforced concrete (RC) beam may be accomplished by retrofitting. An innovative way to do this retrofitting that is proposed in this study utilizes turnbuckle to apply external post-tensioning. This Turnbuckle External Post-Tensioning (T-EPT) was experimentally proven to improve the serviceability and load carrying capacity of reinforced concrete beams. The T-EPT system comprises a braced steel frame and a turnbuckle mechanism to provide the prestressing force. To further develop the T-EPT, this research aims to develop a numerical scheme to analyze the structural performance of reinforced concrete beams with this kind of retrofitting. The fiber method analysis was used as the numerical scheme. The fiber method is a simplified finite element method that is used in this study to predict the elastic and inelastic behavior of a reinforced concrete beam. With this, parametric study was conducted so that the effective setup of doing the T-EPT retrofitting may be determined. Different T-EPT configurations were investigated and their effectiveness evaluated. Overall, the T-EPT was effective in improving the serviceability condition and load carrying capacity of reinforced concrete beam.

An Experimental Study on Reinforcement Effect of FRP (FRP 보강효과에 관한 실험적 연구)

  • 김생빈;김동신
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • /
    • pp.163-168
    • /
    • 1990
  • This study shows both through experiment and based on theory the reinforcement effectiveness when using FRP(Fiber Reinforced Plastics) as a means of reinforcing the concrete of the deteriorated concrete. Non-deteriorated concrete and deteriorated concrete which is deteriorated by freezing and thawing are made three type specimens (non-reinforced) concrete beam, one layer FRP reinforced concrete beam, two layer FRP reinforced concrete beam) for this purpose. Bending strength and cracking load ratio is measured by bending test.

  • PDF

Flexural Strength of Dual Concrete Beams Composed of Fiber Reinforced Concrete and Normal Concrete (섬유보강 콘크리트와 보통콘크리트로 합성된 이중 콘크리트 보의 휨 강도)

  • 박대효;부준성;조백순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • /
    • pp.579-584
    • /
    • 2001
  • The reinforced concrete(RC) beam is developed cracks because the compression strength of concrete is strong but the tensile strength is weak. The structural strength and stiffness is decreased by reduction of tension resistance capacity of concrete due to the developed cracks. Using the fiber reinforced concrete that is increased the flexural strength and tensile strength at tensile part can enhance the strength and stiffness of concrete structure and decrease the tensile flexural cracks and deflection. Therefore, The reinforced concrete used the fiber reinforced concrete at tensile part ensure the safety and serviceability of the concrete structures. In this study, analytical model of a dual concrete beam that is composed of the normal strength concrete at compression part and the high tensile strength concrete at tensile part is developed by using the equilibrium condition of forces and compatibility condition of strains and is parted into elastic analytical model and ultimate analytical model. Three group of test beam that is formed of one reinforced concrete beam and two dual concrete beams for each steel reinforcement ratio is tested to examine the flexural behavior of dual concrete beams. The comparative study of total nine test beams is shown that the ultimate load of a dual concrete beams relative to the reinforced concrete beams have an increase in approximately 30%. In addition, the initial flexural rigidity, as used here, refer to the slope of load-deflection curves in elastic state is increased and the deflection is decreased.

  • PDF

Experimental Study to fatigue performance of reinforced concrete beam (RC보의 피로성능에 관한 실험적연구)

  • Kim Soon-Chul;Kim Eun-Kyum
    • Proceedings of the KSR Conference
    • /
    • /
    • pp.848-853
    • /
    • 2004
  • This is a basic experimental study elaborated on reinforced concrete beam under load, especially crack behavior, bending stiffness, deflection and strain of concrete and reinforced bar for reinforced concrete and steel fiber reinforced concrete beam in relation to fatigue loading in service ability limit states. Test parameters are concrete strength, volume. and type of steel fiber and fatigue loading in service ability limit states to be changed. In order to obtain the actual conditions of various working loads for the aforesaid reinforced concrete beam, minimum load is applied 10$\%$ of maximum design load and maximum load was applied 60$\%$, 80$\%$ and 100$\%$ respectively. Under the same condition, the test was implemented up to 1 million cycle and the result was thoroughly analyzed and reviewed.

  • PDF

Flexural and Shear Behavior of Reinforced Dual Concrete Beam (철근 이중 콘크리트 보의 휨 및 전단 거동)

  • Park Tae-Hyo;Park Jae-Min;Kim Hee-Dae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3
    • /
    • pp.401-409
    • /
    • 2005
  • In this study, reinforced dual concrete beam (RDC beam) composed of steel fiber reinforced concrete (SFRC) in the tension part and normal strength concrete (NSC) in the compression and remaining part is proposed. It is the epochal structural system that improves the overall structural performances of beam by partially superseding the steel fiber reinforced concrete in the lower tension part of conventional reinforced concrete beam (RC beam). Flexural and shear tests are performed to prove the structural excellence of RDC beam in comparison with RC beam. An analytical method is proposed to understand the flexrual behavior and is compared to experimental results. And for shear behavior, experimental results are compared to empirical equations predicting the ultimate shear strength of full-depth fiber reinforced concrete beam to examine the behavior of RDC beam under shear. From this studies, it is proved that RDC beam has more superior structural performance than RC beam, and the analytical method for flexural behavior agrees well with experimental results, and the partial-depth fiber reinforcements have no noticeable effect on ultimate shear strength but it is considerably effective to control and prevent evolutions of crack.

Experiment research on seismic performance of prestressed steel reinforced high performance concrete beams

  • Xue, Weichen;Yang, Feng;Li, Liang
    • Steel and Composite Structures
    • /
    • v.9 no.2
    • /
    • pp.159-172
    • /
    • 2009
  • Two prestressed steel reinforced high performance concrete (SRC) beams, a nonprestressed SRC beam and a counterpart prestressed concrete beam were tested under low reversed cyclic loading to evaluate seismic performance of prestressed SRC beams. The failure modes, deformation restoring capacity, ductility and energy dissipation capacity of the prestressed SRC beams were discussed. Results showed that due to the effect of plastic deformations of steel beams encased in concrete, the three SRC beams exhibited residual deformation ratios ranging between 0.64 and 0.79, which were apparently higher than that of the prestressed concrete beam (0.33). The ductility coefficients of the prestressed SRC beams and the prestressed concrete beam ranged between 4.65 and 4.87, obviously lower than that of nonprestressed SRC beam (9.09), which indicated the steel beams influenced the ductility little while prestressing resulted in an apparent reduction in ductility. The amount of energy dissipated by the prestressed SRC beams was less than that dissipated by the nonprestressed SRC beam but much more than that dissipated by the prestressed concrete beam.

Strengthening of reinforced concrete beams with epoxy-bonded perforated steel plates

  • Aykac, Sabahattin;Kalkan, Ilker;Uysal, Ali
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.735-751
    • /
    • 2012
  • Although being one of the most popular strengthening techniques in reinforced concrete beams, the use of steel plates bonded to the soffit raises problems of ductility. This study aims at investigating the influence of the use of perforated steel plates instead of solid steel plates on the ductility of reinforced concrete beams. A total of nine reinforced concrete beams were tested. In addition to an unplated beam, eight beams with perforated steel plates of two different thicknesses (3 mm and 6 mm) were subjected to monotonic loading. Effect of bonding the plates to the beams with anchor bolts and with additional side plates bonded to the sides of the beam with and without anchors is also investigated. The use of bolts in addition to epoxy was found to greatly contribute to the ductility and energy absorption capacity of the beams, particularly in specimens with thick plates (6 mm) and the use side plates in addition to the bottom plate was found to be ineffective in increasing the ductility of a concrete beam unless the side plates are attached to the beam with anchors bolts. The thickness of the plate was found to have little effect on the bending rigidity of the beam.