• Title, Summary, Keyword: removal system

Search Result 3,221, Processing Time 0.05 seconds

Characteristics of Organic Compounds Removal and Microbe Attachment in Packed Bed Column Reactor Using Surface-modified Media (표면개질 담체를 이용한 충전탑 반응기에서 유기물 제거 및 미생물 부착 특성)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.27 no.3
    • /
    • pp.145-150
    • /
    • 2012
  • This study was accomplished using packed bed column reactors that contain nonsurface-modified polypropylene media and surface-modified media from hydrophobic surface property into hydrophilic property by ion beam irradiation. The objectives of this research was investigated the characteristics of organic compounds removal and microbe attachment from sewage of school cafeteria in these reactors. In 736.8 mg/L of the average inflow $COD_{Cr}$ concentration the reactors with and without surface modification showed 81.8% and 70.3% of average $COD_{Cr}$ removal efficiencies, respectively, which proves the $COD_{Cr}$ removal efficiency of surface-modified media reactor is higher than that of nonsurface-modified media reactor. After 90 days, there were maximum differences between modified system and non-modified system. In that time the maximum removal efficiency of $COD_{Cr}$ was 96.5% in modified system and was 85.2% in non-modified system that showed removal efficiency of surface-modified media system is 11.3% higher than that of nonsurface-modified media system. The average removal efficiency of SS was 80.4% for the surface modified system and 61.6% for the non-modified system under same condition. Also, the reactor of surface-modified media has advantage on microbe attachment and biofilm formation.

The BNR-MBR(Biological Nutrient Removal-Membrane Bioreactor) for nutrient removal from high-rise building in hot climate region

  • Ratanatamskul, C.;Glingeysorn, N.;Yamamoto, K.
    • Membrane Water Treatment
    • /
    • v.3 no.2
    • /
    • pp.133-140
    • /
    • 2012
  • The overall performance of BNR-MBR, so-called Anoxic-Anaerobic-Aerobic Membrane Bioreactor ($A^3$-MBR), developed for nutrient removal was studied to determine the efficiencies and mechanisms under different solid retention time (SRT). The reactor was fed by synthetic high-rise building wastewater with a COD:N:P ratio of 100:10:2.5. The results showed that TKN, TN and phosphorus removal by the system was higher than 95%, 93% and 80%, respectively. Nitrogen removal in the system was related to the simultaneous nitrification-denitrification (SND) reaction which removed all nitrogen forms in aerobic condition. SND reaction in the system occurred because of the large floc size formation. Phosphorus removal in the system related to the high phosphorus content in bacterial cells and the little effects of nitrate nitrogen on phosphorus release in the anaerobic condition. Therefore, high quality of treated effluent could be achieved with the $A^3$-MBR system for various water reuse purposes.

Gas Removal Characteristics of Air Clean System Applying a Magnetic Field (자계가 인가된 공기청정장치의 가스 제거 특성)

  • Shin, Soo-Youn;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.921-925
    • /
    • 2007
  • Gas removal characteristics of an air clean system, consisted of a filter and a nonthermal discharge plasma reactor with a magnetic field, have been investigated with emphasis on the enhancing gas removal efficiency of the applied magnetic field. It is found that the magnetic field influenced significantly to the corona discharge characteristics, decreasing the corona onset voltage and increasing the corona current. As a result, the proposed air clean system with the magnetic field showed the higher removal efficiency of the gas (e.g., trimethlyamine) than that of without the magnetic field. This would be because the magnetic field applied to the discharge plasma reactor of the air clean system can elevate the corona characteristics, and activate the generation of ozone, thus the removal efficiency of the gas was concurrently enhanced. This reveals that the proposed air clean system with the magnetic field could be used as an effective means of removal an indoor pollutant gas.

A study on the Simultaneous Removal of Nitrogen and Phosphorus on Reactor Configuration in Intermittently Aerated Activated Sludge System (간헐폭기 활성슬러지 시스템에서 반응조 형태에 따른 질소 및 인의 동시제거 특성에 관한 연구)

  • Lee, Won-Ho;Seo, In-Seok;Kim, Kwang-Yul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.106-114
    • /
    • 1998
  • In this research, single-, two- and four-stage intermittently aerated activated sludge system were investigated for simultaneous removal of nitrogen and phosphorus with swine wastewater. For the comparison of removal efficiency, conventional activated sludge system was operated. Operational conditions of intermittently aerated activated sludge system were SRT 20day, HRT 24hr and aeration/nonaeration time 1hr/1hr, respectively. Nitrogen and phosphorus removal efficiency in Intermittently aerated activated sludge system was upgraded compare with conventional activated sludge system. In single-stage intermittently aerated activated sludge system, release-uptake of $PO_4^{3-}-P$ was observed very well but, phosphosrus removal in effluent was not effective. In single-stage intermittently aerated activated sludge system, release-uptake of $PO_4^{3-}-P$ in first reactor, was observed very well but, in following reactor, $PO_4^{3-}-P$ concentation showed almost no change. T-N removal efficiency in conventional activated sludge system, single-, two-, and four-stage intermittently aerated activated sludge system were 48, 87, 90.9 and 95.5%, respectively, and phosphorus removal efficiency were 48, 75, 97 and 95%, respectively. Intermittently aerated activated sludge system as a alternative processes of conventional system leads to meet satisfactory effleunt with only on/off aeration regulation and save energy for aeration.

  • PDF

Collection characteristics of wet-type multi-staged impaction system for air pollutants removal of marine diesel engines (박용디젤기관의 대기오염 저감을 위한 습식 다단 임팩션 시스템의 집진특성)

  • YOA, Seok-Jun;KWON, Jun-Hyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.3
    • /
    • pp.248-256
    • /
    • 2016
  • The main purpose of this paper was to analyze the removal characteristics of gas/particulate phase pollutants for the present system. Experimentally, we performed to estimate the pressure drop and air pollution removal efficiency with physical variables such as stage number, tube velocity, tube diameter, water spray ($NH_4OH$), and so on. It was concluded that the pressure drop was shown below $111mmH_2O$ lower than that of the existing scrubber (centrifugal spray chamber, over 200 mmAq) at inlet velocity 3.46 m/s and 5 stage. The particular removal efficiency of this system was to be significantly higher at 99.8% in comparison with that of the existing scrubber for 5 stage, inlet velocity 3.46 m/s and $NH_4OH$ (aq) 300 mL/min. It was estimated that the removal efficiencies of $SO_2$ and $NO_2$ were 80% and 70% at system inlet velocity 2.07 m/s and $NH_4OH$ (aq) 300 mL/min respectively. Additionally, the present collection system was to be considered as an effective compact system for simultaneous removal of air pollutants (gas/particulate) due to much higher removal efficiency and appropriate pressure drop without a demister.

Biological Treatment of Textile Wastewater by Anaerobic-Aerobic Reactor System (Pilot 혐기-호기 공정을 이용한 염색폐수의 생물학적 처리)

  • 박영식;안갑환
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.11-20
    • /
    • 2001
  • An anaerobic sludge-aerobic fixed-bed biofilm(packed with ceramic support carrier of 1 inch size) reactor system was built up to treat textile wastewater. The efficiency of reactor system was examined by determining the effects of textile wastewater ratio(from 25% to 100% at HRT 24 h). The influent range of SCOD concentration and color were 1,036~1,357 mg/L, and 1,487~1,853 degree, respectively. When textile wastewater ratio was 100% and hydraulic retention time was 24 hours, SCOD removal efficiency by the anaerobic stage were 39.2% 100% and hydraulic retention time was 24 hours, SCOD removal efficiency by the anaerobic stage were 39.2% and the removal efficiency of the whole system were 75.8%. Color removal efficiency by the anaerobic stage were 45.4%(soluble color), and the removal efficiency of the whole system were 70.2%. In the A/A reactor system, the aerobic stage played an important role in removing both color and COD as well as anaerobic stage.

  • PDF

A Study on Weld Bead Profile Measurement System for Use in Automatic Weld Bead Removal System

  • Lee, Jeong-Woo;Lee, Eun-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.194-197
    • /
    • 1999
  • Automatic weld bead removal system is consisted of bead removal tool, bead profile measurement system and tool motion control system. In this paper, design of weld bead profile measurement system which is used for automatic weld bead removal system is described. The system measures the weld bead position, normal vector of the auto-body and weld bead profile. The optical sensor with structured laser beam is used as a sensor and comparison of the sensor that can be used for this purpose is discussed in detail. The measurement process and the related software developed for this purpose are also described. A median filter, average filter and long line filters are used and their effects in bead profile measurement are discussed. The measurement system is integrated into automatic bead removal system and is used to remove weld bead in rear pillar of automotive body. The whole system operates well in automotive body assembly line and thus the system is proved to be good for this purpose.

  • PDF

Removal of Virus in Home Drinking Water Treatment Systems (가정용 정수시스템의 바이러스 제거)

  • 김영진;오남순;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.45-48
    • /
    • 2000
  • Reverse osmosis filtration(RO) system and ultrafiltration(UF) system are principally use for domestic home drinking water treatment systems. The object of this study is to make a comparison between two systems in terms of theirs abilities to remove RNA coilphage QB as an indicator of pathogenic enteroviruses. The virus removal ratio of RO system was 99.999%, which was higher than EPA virus treatment guideline(99.99%). In the course of filtration, removal ratios of sediment filter, pre-carbon filter, reverse osmosis membrane and post-carbon filter were 75.000%, 93.208%, 99.997% and 99.999%, repectively. In case of UF system, virus removal ratio was 99.708%. Removal ratios of sediment filter, pre-carbon filter, post-carbon filter and ultrafiltration membration membrane were 71.038%, 91.530%, 98.283% and 99.708%, respecively, in UF steps. Therefore, RO system is more effective than UF system in virus removal.

  • PDF

A Vegetation Purification System for Water Quality Improvement in Irrigation Reservoirs (저수지 수질개선을 위한 식생정화시스템)

  • 박병흔
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.87-95
    • /
    • 2000
  • A vegetation purification system was applied to improve water quality of Masan Reservoir in Korea, which was composed of constructed wetlands in series. Five different kinds of macrophytes were planted in each wetland. The system was operated with the condition of low concentrations and high hydraulic loadings. Removal efficiencies(%) of chemical oxygen demand(COD) , total nitrogen(T-N) and total phosphorus(T-P) in this system were 9.0, 12.8, 20.1% , respectively. and removal rates(g/$m^2$/d) were 1.9(COD), 0.34(T-N) and 0.05(T-P) . Comparing this system with other wetlands operated at low hydraulic loadings, average removal efficiencies were low but removal rates were relatively high. Accordingly, this system could be applied to imporve reservoir water quality, because removal rates are more important than removal efficiencies in case of reservoir water quality improvement . However, the removal efficiencies and rates of this system are less than those of the hydroponic biofilter method which is a kind of a constructed wetland and utilize root zones of emergent macrophytes for trapping pollutants. Therefore, it is recommended that this system should be modified to utilize root zones of emergent macrophytes enough to improve reservoir water quality more efficiently.

  • PDF

Evaluation of Pollutants Removal for Treated Wastewater Effluent and River Water by Meandering Constructed Wetland System (하수처리수와 하천수를 대상으로 한 생태적 수질정화 비오톱 시스템의 오염물질 제거에 대한 수질정화 평가)

  • Lee, Sang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.131-139
    • /
    • 2012
  • Field experiment was performed from June 2010 to July 2011 to evaluate pollutants removal efficiency in the constructed wetland system for the treated wastewater and the river water. The wetland systems were constructed near Gyungan river. Two different systems with meandering shape were compared for seasonal base and operational period base. Several kinds of aquaculture are planted through the corridor of wetland system. Average removal rate of BOD, T-N and T-P for A system were 15.8%, 14.8% and 26.5%, respectively. Average removal rate of BOD, T-N and T-P for C system were 23.5%, 27.8% and 10.6%, respectively. The effluent from two wetland systems often exceeded effluent water quality standards for wastewater influent, however effluent water quality standards for river water. However, the wetland system can be useful to treat polluted river water and effluent from wastewater plant. Removal rate of pollutants in seasonal variation was the highest in summer for BOD and T-N, however the removal rates of T-P were higher in spring and autumn than in summer.