• Title, Summary, Keyword: representation of symmetric group

Search Result 10, Processing Time 0.033 seconds

ON CONSTRUCTING REPRESENTATIONS OF THE SYMMETRIC GROUPS

  • Vahid Dabbaghian-Abdoly
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.119-123
    • /
    • 2006
  • Let G be a symmetric group. In this paper we describe a method that for a certain irreducible character X of G it finds a subgroup H such that the restriction of X on H has a linear constituent with multiplicity one. Then using a well known algorithm we can construct a representation of G affording X.

FOCK REPRESENTATIONS OF THE NEISENBERG GROUP $H_R^(G,H)$

  • Yang, Jae-Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.345-370
    • /
    • 1997
  • In this paper, we introduce the Fock representation $U^{F, M}$ of the Heisenberg group $H_R^(g, h)$ associated with a positive definite symmetric half-integral matrix $M$ of degree h and prove that $U^{F, M}$ is unitarily equivalent to the Schrodinger representation of index $M$.

  • PDF

ON FIXED POINTS ON COMPACT RIEMANN SURFACES

  • Gromadzki, Grzegorz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.1015-1021
    • /
    • 2011
  • A point of a Riemann surface X is said to be its fixed point if it is a fixed point of one of its nontrivial holomorphic automorphisms. We start this note by proving that the set Fix(X) of fixed points of Riemann surface X of genus g${\geq}$2 has at most 82(g-1) elements and this bound is attained just for X having a Hurwitz group of automorphisms, i.e., a group of order 84(g-1). The set of such points is invariant under the group of holomorphic automorphisms of X and we study the corresponding symmetric representation. We show that its algebraic type is an essential invariant of the topological type of the holomorphic action and we study its kernel, to find in particular some sufficient condition for its faithfulness.

CAUCHY DECOMPOSITION FORMULAS FOR SCHUR MODULES

  • Ko, Hyoung J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.41-55
    • /
    • 1992
  • The characteristic free representation theory of the general linear group is one of the powerful tools in the study of invariant theory, algebraic geometry, and commutative algebra. Recently the study of such representations became a popular theme. In this paper we study the representation-theoretic structures of the symmetric algebra and the exterior algebra over a commutative ring with unity 1.

  • PDF

THETA SUMS OF HIGHER INDEX

  • Yang, Jae-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1893-1908
    • /
    • 2016
  • In this paper, we obtain some behaviours of theta sums of higher index for the $Schr{\ddot{o}}dinger$-Weil representation of the Jacobi group associated with a positive definite symmetric real matrix of degree m.

VERIFICATION OF A PAILLIER BASED SHUFFLE USING REPRESENTATIONS OF THE SYMMETRIC GROUP

  • Cho, Soo-Jin;Hong, Man-Pyo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.771-787
    • /
    • 2009
  • We use an idea of linear representations of the symmetric group to reduce the number of communication rounds in the verification protocol, proposed in Crypto 2005 by Peng et al., of a shuffling. We assume Paillier encryption scheme with which we can apply some known zero-knowledge proofs following the same line of approaches of Peng et al. Incidence matrices of 1-subsets and 2-subsets of a finite set is intensively used for the implementation, and the idea of $\lambda$-designs is employed for the improvement of the computational complexity.

QUANTUM MARKOVIAN SEMIGROUPS ON QUANTUM SPIN SYSTEMS: GLAUBER DYNAMICS

  • Choi, Veni;Ko, Chul-Ki;Park, Yong-Moon
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.1075-1087
    • /
    • 2008
  • We study a class of KMS-symmetric quantum Markovian semigroups on a quantum spin system ($\mathcal{A},{\tau},{\omega}$), where $\mathcal{A}$ is a quasi-local algebra, $\tau$ is a strongly continuous one parameter group of *-automorphisms of $\mathcal{A}$ and $\omega$ is a Gibbs state on $\mathcal{A}$. The semigroups can be considered as the extension of semi groups on the nontrivial abelian subalgebra. Let $\mathcal{H}$ be a Hilbert space corresponding to the GNS representation con structed from $\omega$. Using the general construction method of Dirichlet form developed in [8], we construct the symmetric Markovian semigroup $\{T_t\}{_t_\geq_0}$ on $\mathcal{H}$. The semigroup $\{T_t\}{_t_\geq_0}$ acts separately on two subspaces $\mathcal{H}_d$ and $\mathcal{H}_{od}$ of $\mathcal{H}$, where $\mathcal{H}_d$ is the diagonal subspace and $\mathcal{H}_{od}$ is the off-diagonal subspace, $\mathcal{H}=\mathcal{H}_d\;{\bigoplus}\;\mathcal{H}_{od}$. The restriction of the semigroup $\{T_t\}{_t_\geq_0}$ on $\mathcal{H}_d$ is Glauber dynamics, and for any ${\eta}{\in}\mathcal{H}_{od}$, $T_t{\eta}$, decays to zero exponentially fast as t approaches to the infinity.

Certain exact complexes associated to the pieri type skew young diagrams

  • Chun, Yoo-Bong;Ko, Hyoung J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.265-275
    • /
    • 1992
  • The characteristic free representation theory of the general linear group has found a wide range of applications, ranging from the theory of free resolutions to the symmetric function theory. Representation theory is used to facilitate the calculation of explicit free resolutions of large classes of ideals (and modules). Recently, K. Akin and D. A. Buchsbaum [2] realized the Jacobi-Trudi identity for a Schur function as a resolution of GL$_{n}$-modules. Over a field of characteristic zero, it was observed by A. Lascoux [6]. T.Jozefiak and J.Weyman [5] used the Koszul complex to realize a formula of D.E. Littlewood as a resolution of schur modules. This leads us to further study resolutions of Schur modules of a particular form. In this article we will describe some new classes of finite free resolutions associated to the Pieri type skew Young diagrams. As a special case of these finite free resolutions we obtain the generalized Koszul complex constructed in [1]. In section 2 we review some of the basic difinitions and properties of Schur modules that we shall use. In section 3 we describe certain exact complexes associated to the Pieri type skew partitions. Throughout this article, unless otherwise specified, R is a commutative ring with an identity element and a mudule F is a finitely generated free R-module.e.

  • PDF