• Title, Summary, Keyword: research logic

Search Result 1,212, Processing Time 0.065 seconds

Truncation Effects of the Fuzzy Logic Controllers

  • Moon, Byung-Soo;Moon, Je-Sun;Lee, Jongmin
    • Journal of Korean Institute of Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.35-40
    • /
    • 1994
  • Fuzzy logic controllers are often found to behave better than PI controllers. One of the major reasons for this is that the fuzzy logic inferences used can produce nonlinear type controllers. For some applicatioins, howeveer, linear fuzzy logic controllers also perofrm better than PI controllers. In this paper, we examine linear fuzzy logic controllers to show that the truncation effects of the fuzzy logic controllers make them perform much better than the PI controllers. In terms of a performance index we used, the truncation effects reduced the index value by up to 80% for examples we studied.

  • PDF

A Transparent Logic Circuit for RFID Tag in a-IGZO TFT Technology

  • Yang, Byung-Do;Oh, Jae-Mun;Kang, Hyeong-Ju;Park, Sang-Hee;Hwang, Chi-Sun;Ryu, Min Ki;Pi, Jae-Eun
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.610-616
    • /
    • 2013
  • This paper proposes a transparent logic circuit for radio frequency identification (RFID) tags in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) technology. The RFID logic circuit generates 16-bit code programmed in read-only memory. All circuits are implemented in a pseudo-CMOS logic style using transparent a-IGZO TFTs. The transmittance degradation due to the transparent RFID logic chip is 2.5% to 8% in a 300-nm to 800-nm wavelength. The RFID logic chip generates Manchester-encoded 16-bit data with a 3.2-kHz clock frequency and consumes 170 ${\mu}W$ at $V_{DD}=6$ V. It employs 222 transistors and occupies a chip area of 5.85 $mm^2$.

Fuzzy Logic in Nuclear Safety Issues

  • Ruan, Da
    • Journal of Korean Institute of Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.34-44
    • /
    • 1997
  • The Belgian Nuclear Research Centre(SCK${\cdot}$CEN) has been a pioneer of the peaceful uses of nuclear energy after over forty years of existence. Recently, SCK${\cdot}$CEN's financial support of doctoral and postdoctoral research in close collaboration with universities has been a vital ingredient for securing a quality profile committed to the pursuit of execllence. FLINS, Fuzzy Logic and Intelligent technologies in Nuclear Science, was initially built within one of the postdoctoral research project at SCK${\cdot}$CEN. Among SCK${\cdot}$CEN's activities which will have an important impact on its scientific future, the application of fuzzy logic and intelligent technologies in nuclear science and engineering opens new domains in radiation protection, safety assessment, human reliability, nuclear reactor control, waste and disposal, etc. In this paper, we review the available literature on fuzzy logic in nuclear applications. We then present the initiative of R&D on fuzzy logic applications at SCK${\cdot}$CEN, namely, (1) safety control for a nuclear reactor, and (2) a safety evaluation model for nuclear transmission lines. By these two examples of nuclear applications, we illustrate the potential use of fuzzy logic in nuclear safety issues.

  • PDF

A Study on the Reactor Protection System Composed of ASICs

  • Kim, Sung;Kim, Seog-Nam;Han, Sang-Joon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • /
    • pp.191-196
    • /
    • 1996
  • The potential value of the Application Specific Integrated Circuits(ASIC's) in safety systems of Nuclear Power Plants(NPP's) is being increasingly recognized because they are essentially hardwired circuitry on a chip, the reliability of the system can be proved more easily than that of software based systems which is difficult in point of software V&V(Verification and Validation). There are two types of ASIC, one is a full customized type, the other is a half customized type. PLD(Programmable Logic Device) used in this paper is a half customized ASIC which is a device consisting of blocks of logic connected with programmable interconnections that are customized in the package by end users. This paper describes the RPS(Reactor Protection System) composed of ASICs which provides emergency shutdown of the reactor to protect the core and the pressure boundary of RCS(Reactor Coolant System) in NPP's. The RPS is largely composed of five logic blocks, each of them was implemented in one PLD, as the followings. A). Bistable Logic B). Matrix Logic C).Initiation Logic D). MMI(Man Machine Interface) Logic E). Test Logic.

  • PDF

DEVELOPMENT OF RPS TRIP LOGIC BASED ON PLD TECHNOLOGY

  • Choi, Jong-Gyun;Lee, Dong-Young
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.697-708
    • /
    • 2012
  • The majority of instrumentation and control (I&C) systems in today's nuclear power plants (NPPs) are based on analog technology. Thus, most existing I&C systems now face obsolescence problems. Existing NPPs have difficulty in repairing and replacing devices and boards during maintenance because manufacturers no longer produce the analog devices and boards used in the implemented I&C systems. Therefore, existing NPPs are replacing the obsolete analog I&C systems with advanced digital systems. New NPPs are also adopting digital I&C systems because the economic efficiencies and usability of the systems are higher than the analog I&C systems. Digital I&C systems are based on two technologies: a microprocessor based system in which software programs manage the required functions and a programmable logic device (PLD) based system in which programmable logic devices, such as field programmable gate arrays, manage the required functions. PLD based systems provide higher levels of performance compared with microprocessor based systems because PLD systems can process the data in parallel while microprocessor based systems process the data sequentially. In this research, a bistable trip logic in a reactor protection system (RPS) was developed using very high speed integrated circuits hardware description language (VHDL), which is a hardware description language used in electronic design to describe the behavior of the digital system. Functional verifications were also performed in order to verify that the bistable trip logic was designed correctly and satisfied the required specifications. For the functional verification, a random testing technique was adopted to generate test inputs for the bistable trip logic.

Enhancement of Computational Efficiency for Type-1 Fuzzy Logic Controller Using Rule Selection Method (Rule 선택 기법을 사용한 Type-1 Fuzzy Logic Controller의 연산 효율성 향상)

  • Joh, Jung-Woo;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1879_1880
    • /
    • 2009
  • 본 논문에서는 제어상황에 따라 Type-1 Fuzzy Logic Controller가 선택적으로 rule을 사용하도록 rule 선택 알고리즘을 제안 한다. 그리고 이를 통해 연산 효율성을 높이는 방법에 관해 논한다. Type-1 Fuzzy Logic Controller는 기존의 제어기에 비해 설계하기 쉽고 성능이 더 뛰어나다. 그러나 제어 변수가 많아질수록 rule의 개수가 늘어나 연산량이 증가하게 된다. 연산량이 많아지면 고성능의 컴퓨터에서는 실시간 연산에 문제가 없으나 산업용 micro controller에서는 실시간 연산을 구현하는데 한계가 발생한다. 본 논문에서는 Type-1 Fuzzy Logic System의 논리구조에 근거하여 Type-1 Fuzzy Logic Controller의 연산량을 감소시킬 수 있는 알고리즘을 제안한다. 제안한 알고리즘은 제어상황에 따라 필요한 rule들만 선택적으로 제어값 도출을 위한 연산에 관여하도록 한다. Matlab 시뮬레이션을 통해 제안한 알고리즘의 유용성과 연산량을 실험하였다. 실험대상은 2륜 이동로봇으로 하였고 step 응답과 전/후진 시 결과를 관찰하였다. 실험 결과 제안한 알고리즘이 기존의 Type-1 Fuzzy Logic Controller에 비해 제어상황에 따라 필요한 rule들만 선택적으로 사용하는 것을 확인하였다. 결과적으로 연산 효율성이 향상되었다.

  • PDF

DEVELOPMENT OF REACTOR POWER CONTROL LOGIC FOR THE POWER MANEUVERING OF KALIMER-600

  • Seong, Seung-Hwan;Kang, Han-Ok;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.329-338
    • /
    • 2010
  • We developed an achievable control logic for the reactor power level during a power maneuvering event and set up some constraints for the control of the reactor power in a conceptual sodium-cooled fast reactor (KALIMER-600) that was developed at KAERI. For simulating the dynamic behaviors of the plant, we developed a fast-running performance analysis code. Through various simulations of the power maneuvering event, we evaluated some suggested control logic for the reactor power and found an achievable control logic. The objective of the control logic is to search for the position of the control rods that would keep the average temperature of the primary pool constant and, concurrently, minimize the power deviation between the reactor and the BOP cycle during the power maneuvering. In addition, the flow rates of the primary pool and the intermediate loop should be changed according to the power level in order to not violate the constraints set up in this study. Also, we evaluated some movement speeds of the control rods and found that a fast movement of the control rods might cause the power to fluctuate during the power maneuvering event. We suggested a reasonable movement speed of the control rods for the developed control logic.

Cell Grading Technique Based on Fuzzy Logic for Battery Pack Using Wasted Li-ion Battery (폐배터리를 활용한 배터리팩을 위한 Fuzzy Logic 기반 Cell Grading 기법 연구)

  • Han, Dongho;Kwon, Sanguk;Lim, Cheolwoo;Jang, Minho;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.439-440
    • /
    • 2019
  • 리튬 이온 배터리가 전기 자동차 및 다양한 어플리케이션에 적용됨에 따라 폐배터리의 수요 또한 증가하고 있다. 내부 화학적 상태가 상이한 배터리의 전기적 특성실험을 통해 파라미터를 선정하였으며, 데이터의 분포에 적합한 Fuzzy Logic을 설계하였다. 설계된 Fuzzy Logic을 통한 Cell Grading으로 내부 화학적 특성이 유사한 셀을 선별하였다.

  • PDF

An Empirical Study for Satisfiability Problems in Propositional Logic Using Set Covering Formulation (집합 피복 공식화를 이용한 명제논리의 만족도 문제에 대한 계산실험 연구)

  • Cho, geon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.4
    • /
    • pp.87-109
    • /
    • 2002
  • A satisfiability problem in propositional logic is the problem of checking for the existence of a set of truth values of atomic prepositions that renders an input propositional formula true. This paper describes an empirical investigation of a particular integer programming approach, using the set covering model, to solve satisfiability problems. Our satisfiability engine, SETSAT, is a fully integrated, linear programming based, branch and bound method using various symbolic routines for the reduction of the logic formulas. SETSAT has been implemented in the integer programming shell MINTO which, in turn, uses the CPLEX linear programming system. The logic processing routines were written in C and integrated into the MINTO functions. The experiments were conducted on a benchmark set of satisfiability problems that were compiled at the University of Ulm in Germany. The computational results indicate that our approach is competitive with the state of the art.

A Study on the Computer­Aided Processing of Sentence­Logic Rule (문장논리규칙의 컴퓨터프로세싱을 위한 연구)

  • Kum, Kyo-young;Kim, Jeong-mi
    • Journal of Korean Philosophical Society
    • /
    • v.139
    • /
    • pp.1-21
    • /
    • 2016
  • To quickly and accurately grasp the consistency and the true/false of sentence description, we may require the help of a computer. It is thus necessary to research and quickly and accurately grasp the consistency and the true/false of sentence description by computer processing techniques. This requires research and planning for the whole study, namely a plan for the necessary tables and those of processing, and development of the table of the five logic rules. In future research, it will be necessary to create and develop the table of ten basic inference rules and the eleven kinds of derived inference rules, and it will be necessary to build a DB of those tables and the computer processing of sentence logic using server programming JSP and client programming JAVA over its foundation. In this paper we present the overall research plan in referring to the logic operation table, dividing the logic and inference rules, and preparing the listed process sequentially by dividing the combination of their use. These jobs are shown as a variable table and a symbol table, and in subsequent studies, will input a processing table and will perform the utilization of server programming JSP, client programming JAVA in the construction of subject/predicate part activated DB, and will prove the true/false of a sentence. In considering the table prepared in chapter 2 as a guide, chapter 3 shows the creation and development of the table of the five logic rules, i.e, The Rule of Double Negation, De Morgan's Rule, The Commutative Rule, The Associative Rule, and The Distributive Rule. These five logic rules are used in Propositional Calculus, Sentential Logic Calculus, and Statement Logic Calculus for sentence logic.