• Title, Summary, Keyword: safening activity

Search Result 7, Processing Time 0.03 seconds

Safening Activity of Optically Active ${\alpha}$-Methylbenzylphenylurea toward Bensulfuron-methyl and Pyribenzoxim Injury to Rice (광학활성 ${\alpha}$-Methylbenzylphenylurea 유도체의 bensulfuron-methyl과 pyribenzoxim의 벼에 대한 약해경감효과)

  • Ryoo, Jae-Hwan
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.2
    • /
    • pp.153-158
    • /
    • 2005
  • Safening activities of optically active ${\alpha}$-methylbenzylphenylureas on crop injury of rice (Oryza sativa L., cv. Tsukinohikari, japonica) caused by bensulfuron-methyl (methyl 2-[[[[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]methyl]benzoate) and pyribenzoxim (benzophenone o-[2,6-bis[(4,6-dimethoxy-2-pyrimidinyl)oxy]benzoyl]oxime) were investigated. Some derivatives of the optically active compounds exhibited strong safening activity against growth inhibition of rice by bensulfuron-methyl. Out of the derivatives tested, (S)-2,3-diCl and (S)-2-F-4-Me derivatives showed greater relieving activity than that of dymuron. In addition, the stress relieving activity was also obtained when they were applied at 4 days after bensulfuron-methyl treatment. On the other hand, crop injury caused by pyribenzoxim was relieved by about 95% with (S)-2-F-4-Me derivative in shoots and roots of rice seedlings.

Safening Mode of Action of 1, 8-Naphthalic Anhydride on Corn and Soybean Against Herbicide Bensulfuron and Imazaquin (제초제(除草劑) bensulfuron과 imazaquin에 대한 1, 8-naphthalic anhydride(NA)의 옥수수와 콩에 대한 약해경감작용기구(藥害輕減作用機構))

  • Hwang, I.T.;Choi, J.S.;Kim, J.S.;Cho, K.Y.;Chun, J.C.
    • Korean Journal of Weed Science
    • /
    • v.14 no.1
    • /
    • pp.8-15
    • /
    • 1994
  • The mode of safening action and potency of the 1, 8-naphthalic anhydride(NA) were investigated in corn(Zea mays) and soybean(Glycine max) treated with herbicide bensulfuron[2-{{{{{(4,6-dimethoxy-2-pyrimidinyl)amino}carbonyl}amino}sulfonyl}methyl}benzoic acid] and imazaquin[2-{4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl} 3-quinolinonecarboxylic acid]. Seed dressing with 0.2%(w/w) NA showed successful protection in corn against injury from herbicide bensulfuron and imazaquin but not in soybean. Safening factors of NA against bensulfuron and imazaquin were 10.2 and 5.0, respectively, in corn, while they were both 1.3 in soybean. In vivo, Glutathione-S-transferase(GST) activity of NA-treated corn and soybean increased 1.8-and 1.3-fold, respectively, but the activity was not affected by the herbicides in vitro. Acetolactate synthase(ALS) levels of NA-treated corn was increased 1.3-fold, but not changed in soybean. Tolerance of ALS activity to the herbicides was slightly greater in ALS obtained from NA-treated corn than that from the untreated, whereas the difference was not found in soybean. A significant increase of ACCase due to NA occurred in corn, but not in soybean. The herbicides did not affect in vitro ACCase activity.

  • PDF

Investigation of Herbicide Safeners and its Mode of Safening Action Ⅰ. Effect of N-(4-chlorophenyl)maleimide on Metolachlor Absorption and Metabolism (제초제(除草劑) 약해경감물질(藥害輕減物質) 탐색(探索)과 작용기구(作用機構) 규명(糾明) Ⅰ. Metolachlor 흡수(吸收) 및 대사(代謝)에 대한 N-(4-chlorophenyl)maleimide의 효과(效果))

  • Chun, Jae-Chul;Ma, Sang-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.271-278
    • /
    • 1994
  • Mode of safening action of N-(4-chlorophenyl)maleimide (CPMI) on metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-l-methylethyl) acetamide] was investigated in sorghum(Sorghum bicolor L.). CPMI was synthesized by dehydration of N-(4-chlorophenyl)maleamic acid (CPMA) which was obtained from amination with maleic anhydride and 4-chloroaniline. Melting points of CPMA and CPMI (>95% purity) were $200-202^{\circ}C$ and $116-118^{\circ}C$, respectively. Growth response study indicated that seed treatment of CPMI increased tolerance of sorghum shoot to metolachlor approximately threefold. Sorghum shoot was more sensitive to injury caused by metolachlor and CPMI activity than the root. Metolachlor was initially absorbed by sorghum shoot and metabolized to the metolachlor-glutathione conjugate in CPMI-untreated and treated shoots. However, CPMI treatment significantly accelerated metabolism of $[^{14}C]$metolachlor in sorghum shoot, resulting in decrease in metolachlor content and increase in formation of the glutathione conjugate. It was concluded that the protection against metolachlor injury conferred by CPMI appeared to be correlated to detoxification of metolachlor in sorghum shoot tissue.

  • PDF

Effect of CGA 123'407 on Reducing Injury of Rice Plants to Pretilachlor, Butachlor and Benthiocarb (CGA 123'407 처리(處理)가 벼에서 Pretilachlor, Butachlor 및 Benthiocarb의 약해경감(藥害輕減)에 미치는 영향(影響))

  • Lee, H.Y.;Pyon, J.Y.
    • Korean Journal of Weed Science
    • /
    • v.7 no.2
    • /
    • pp.179-185
    • /
    • 1987
  • Laboratory studies were conducted to evaluate safening effect of CGA 123'407 (4,6-dichloro-2-phenyl-pyrimidine) against pretilachlor, butachlor, and benthiocarb in rice plants. Butachlor and benthiocarb at 50 ppm or higher concentrations significantly inhibited rice growth and pretilachlor gradually inhibited growth of rice plants with increase in concentration starting from 0.5 ppm. CGA 123'407 at 0.1 ppm or higher concentrations was effective in reducing injury of rice plants when butachlor and benthiocarb were applied at rate of 10 ppm. Rice injury from pretilachlor at 10 ppm was also reduced by addition of CGA 123'407 at 0.25 ppm or higher concentrations Herbicidal activity of pretilachlor, butachlor, and benthiocarb was not affected by mixture treatments of CGA 123'407.

  • PDF

Investigation of Herbicide Safeners and their Mode of Safening Action;II. Effect of N-(4-chlorophenyl) maleimide, Plant Growth Regulators, and Alkylating Agents on Glutathione Content and Glutathione S-transferase Activity (제초제(除草劑) 약해경감물질(藥害輕減物質) 탐색(探索)과 작용기구(作用機構) 규명(糾明);Ⅱ. Glutathione 함량(含量)과 Glutathione S-transferase 활성(活性) 변화(變化)에 대한 N-(4-chlorophenyl) maleimide, 식물생장조절물질(植物生長調節物質) 및 Alkylating Agents 의 효과(效果))

  • Chun, Jae-Chul;Ma, Sang-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.3
    • /
    • pp.329-337
    • /
    • 1995
  • The effect of N-(4-chlorophenyl) maleimide(CPMI), plant growth regulators, and alkylating agents on gluathione(GSH) content and glutathione S-transferase(GST) activity was examined with 3-day-old etiolated sorghum(Sorghum bicolor [L.] Moench) seedlings. The GSH content and GST activity of untreated seedlings were higher in shoots than that in roots. Response of GST activity in coleoptile was significantly greater than in other tissues of sorghum seedling. In CPMI-treated seedlings, GSH content was not significantly different from that in untreated seedlings. CPM treatment resulted in 2.3-fold increase in GST activity measured with metolachlor as substrate in the coleoptile region. In contrast, change in GST activity measured with metolachlor as substrate in the coleoptile region. In contrast, change in GST activity measured with 1-chloro-2, 4-dinitrobenzene did not occur. The increase of GST activity was caused by induction of a GST isozyme, which is substrate-specific to metolachlor. Subsequently, two hypotheses related to metolachlor detoxification were evaluated on the basis of regulation of plant growth regulators and substrate induction of GST activity. In coleoptile, GST activity measured with metolachior was increased to 2.1-and 3.4-fold by both 2, 4-dichlorophenoxyacetic acid(2,4-D) and metolachlor treated at the germination stage of sorghum, respectively. Treatments of 2.4-D and metolachlor also induced isozymes exhibiting the activity toward metolachlor. One of the isozymes was co-eluted with that induced by CPMI. These results indicated that increase in GST activity by CPMI may be partially related to auxin regulation and substrate induction.

  • PDF

Phytotoxicity Inducing Factors and Its Safening Methods for Benzenesulfonylurea Compound KSC-13906 (Benzenesulfonylurea계 화합물(化合物) KSC-13906의 약해발생요인(藥害發生要因) 및 경감방법(輕減方法))

  • Hwang, I.T.;Choi, J.S.;Hong, K.S.;Yoo, J.H.;Kim, J.S.;Cho, K.Y.
    • Korean Journal of Weed Science
    • /
    • v.18 no.3
    • /
    • pp.225-236
    • /
    • 1998
  • KSC-13906 [Erythro N-{(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl} -2-(2-fluoro-1-hydroxy-n-propyl) benzenesulfonamide, US Patent 5,461,025] was investigated how can control phytotoxicity fluctuation and what a good method apply to new rice herbicide. The growth inhibition was observed when the rice plants was transplanted at a shallow depth(0 - 1cm) and leaching was low(0 - 1cm/ day) from the paddy soil. KSC-13906 appeared to move readily down into the paddy soil with water by 3cm depth in the soil column(${\phi}$ 10cm) filled with loamy sand soil under 3cm/day of leaching condition. Artificial control releasing pattern, designed as treated with KSC-13906 of 9 or 18g ai/ha either at a once or daily treated dividing volume of 1/20, 1/25 and 1/30 of the total volume, increased the safety of KSC-13906 to direct seeded and transplanted rice. The safety of KSC-13906 was also enhanced when KSC-13906 was mixed with dymron. For example, the mixture of KSC-13906 and dymron effectively reduced injury of direct seeded rice plants at 18 and 500g ai/ha, respectively, treated 7 days after transplanting. However, combination of KSC-13906 and several herbicides didn't show any synergistic effetct on herbicidal activity and safening effect on rice. However, the combination of KSC-13906+dymron (9~12+250~500g ai/ha) or KSC-13906+mefenacet+dymron(9+250+250g ai/ha) controlled almost all weeds in paddy field without causing any injury to rice and thus the combination would successfully be used as an oneshot herbicide in rice culture.

  • PDF

Comparison of Herbicidal Action between Pyrazosulfuron - ethyl and Imazaquin (Pyrazosulfuron - ethyl과 Imazaquin의 살초작용 비교)

  • Hwang, I.T.;Choi, J.S.;Kim, J.S.;Cho, K.Y
    • Korean Journal of Weed Science
    • /
    • v.16 no.4
    • /
    • pp.317-326
    • /
    • 1996
  • To know whether pyrazosulfuron-ethyl(PYR) and imazaquin(IMA), known as a acetolactate synthase(ALS) inhibitors, have a same herbicidal action pattern in rice(Oryza sativa) or barnyardgrass (Echinochloa crus-galli), an inhibition pattern and a response characteristics in combination with dymron or butachlor were investigated. In contrast to the phytotoxicity of rice treated with IMA, the one treated with PYR was completely tended to be recovered after 25 days after treatment. Safening effect of dymron against PYR was effectively developed to transplanted-rice, while such an effect was not shown in combination with IMA. In combination with PYR and butachlor, antagonistic effect was observed in both simultaneous or sequential treatment on bamyardgrass, however, additive effect was rather shown in combination with IMA and its activity was dominantly dependent on the first applied compound. $I_{50}$ of PYR and IMA on the ALS extracted from barnyardgrass was $4{\times}10^{-7}$M and $2.8{\times}10^{-6})$M, respectively. Butachlor did not affect their activities on ALS in vitro. These results suggest that PYR and IMA might have a different action each other in the pathway to a final herbicidal activity even though their primary action site is ALS.

  • PDF