• Title/Summary/Keyword: seismic performance

Search Result 1,691, Processing Time 0.153 seconds

Decision Making of Seismic Performance Management for the Aged Road Facilities Based on Road-Network and Fragility Curve (취약도곡선을 이용한 도로망기반 노후도로시설물 내진성능관리 의사결정)

  • Kim, Dong-Joo;Choi, Ji-Hae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.94-101
    • /
    • 2021
  • According to the Facility Management System (FMS) operated by the Korea Authority of Land & Infrastructure Safety, it is expected that the number of aging facilities that have been in use for more than 30 years will increase rapidly to 13.9% in 2019 and 34.5% in 2929, and end up with a social problem. In addition, with the revision of "Common Application of Seismic Design Criteria" by the Ministry of Public Administration and Security in 2017, it is mandatory to re-evaluate all existing road facilities and if necessary seismic reinforcement should be done to minimize the magnitude of earthquake damage and perform normal road functions. The seismic performance management-decision support technology currently used in seismic performance management practice in Korea only determines the earthquake-resistance reinforcement priority based on the qualitative index value for the seismic performance of individual facilities. However with this practice, normal traffic functions cannot be guaranteed. A new seismic performance management decision support technology that can provide various judgment data required for decision making is needed to overcome these shortcomings and better perform seismic performance management from a road network perspective.

Seismic Performance Assessment of RC Bridge Columns using Inelastic Finite Element Analysis (비탄성 유한요소해석을 이용한 철근콘크리트 교각의 내진성능평가)

  • Kim, Tae-Hoon;Chung, Young-Soo;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.63-74
    • /
    • 2005
  • The purpose of this study is to assess the seismic performance of reinforced concrete bridge columns using inelastic finite element analysis. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Damage index aims to provide a means of quantifying numerically the damage in reinforced concrete bridge columns sustained under earthquake loading. The proposed numerical method for the seismic performance assessment of reinforced concrete bridge columns is verified by comparison with reliable experimental results.

Strength Index in Seismic Performance Evaluation Method of Existing Reinforced Concrete Buildings (기존 철근콘크리트 건물 내진진단법의 강도지표)

  • 이원호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.278-287
    • /
    • 2000
  • In Korea, countermeasures against earthquake disasters such as the seismic performance evaluation and/or retrofit scheme of buildings have not been fully performed since Korea had not been experienced many destructive earthquakes in the past. However, due to more than four hundred earthquakes with slight/medium intensity occurred in the off-coastal and inland of Korea during the past 20 years, and due to the great earthquakes occurred recently in neighboring countries, such as the 1995 Hyogoken-Nambu Earthquake with more than 6,500 fatalities in Japan and the 1999 Ji-Ji Earthquake with more than 2,500 fatalities in Taiwan, the importance of the future earthquake preparedness measures in Korea is highly recognized. The main objective of this paper is to provide the basic data for development of a methodology for the future earthquake preparedness in Korea by investigating the concept and applicabilities of the Japanese Standard for Evaluation of Seismic Performance of Existing RC Buildings developed in Japan among the methodologies of all over the world. In this paper, a seismic performance evaluation method of the existing reinforced concrete buildings is proposed based on experimental data of columns and walls carried out in Korea by referring the Japanese Standard, especially focusing on the Strength Index(C) among the indices in the seismic capacity index(IS) equations. Also, the seismic capacities of two existing reinforced concrete buildings in Korea are evaluated based on the proposed methodology and the Japanese Standard, and the correlations between the seismic capacities by the proposed methodology and the Japanese Standard are discussed.

  • PDF

The Evaluation of Seismic Performance on the Concrete Dam of Analysis Method (해석방법에 따른 콘크리트댐의 내진성능평가)

  • 임정열;이종욱;오병현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.1-9
    • /
    • 2003
  • The seismic design of the domestic concrete dams has done by seismic coefficient method considering inertia force, but this method has defect not reflect dynamic properties, as a conservative design method. Therefore, it is necessary for seismic design of dam to consider dynamic properties. Also, concrete dam evaluation of seismic performance has done by seismic coefficient method - in fact, it may done by dynamic analysis - that has many problems when applied to the domestic criteria. This study make a comparative analysis for result from seismic design and evaluation of seismic performance by seismic coefficient method, modified seismic coefficient method, and dynamic analysis method.

Seismic Performance Evaluation according to Construction and Configuration Types of Stone Pagoda Structure (석탑구조물의 축조 및 구성형식에 따른 내진성능평가)

  • Kim, Ho-Soo;Hong, Souk-Il;Yoo, Jun;Joung, Hee-Bum
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.32 no.9
    • /
    • pp.19-26
    • /
    • 2016
  • In Korea, the occurrence frequency of earthquakes has recently increased, compared with the past. So, the various damages for cultural properties due to earthquake can be expected, and especially the masonry stone pagoda structure is vulnerable to earthquake. Therefore, the resonable seismic performance evaluation is required to secure the safety for the stone pagoda structure with the various configuration types. To this end, this study classifies the stone pagoda structures according to the construction and configuration types, aspect ratios, and then applies the discrete element method to model and analyze the masonry structures. Finally, the seismic performance is evaluated through the allowable story drifts due to the analysis results considering the various design variables.

Seismic Performance Evaluation of Valve Support using Simplified FE Model (단순 해석 모델을 이용한 밸브지지대 내진 성능 평가)

  • Kim, Sang-Young;Keum, Dong Yeop;Kim, Hyoung Eun;Kim, Dae Jin;Kim, Jun Ho;Hong, Seong Kyeong;Choi, Won Mok;Seok, Chang Sung
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.60-65
    • /
    • 2017
  • In this study, a simplified FE model for evaluating seismic performance of valve support was suggested and an apparatus for a real structure testing was developed. The seismic performances of three different types of valve supports were evaluated by the real structure testing. By comparing the results between the real structure testing and FEA using the simplified FE model, it was verified that the suggested simplified FE model can be utilized for comparative evaluation of seismic performance of valve supports.

Ambient vibration testing and seismic performance of precast I beam bridges on a high-speed railway line

  • Toydemir, Burak;Kocak, Ali;Sevim, Baris;Zengin, Basak
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.557-570
    • /
    • 2017
  • In this study, the seismic performance levels of four bridges are determined using finite element modeling based on ambient vibration testing. The study includes finite element modeling, analytical modal analyses, ambient vibration testing and earthquake analyses of the bridges. For the purpose, four prestressed precast I beam bridges that were constructed for the Ankara-Sivas high speed railway line are selected for analytical and experimental studies. In the study, firstly a literature review related to the dynamic behavior of bridges especially precast beam bridges is given and then the formulation part related to ambient vibration testing and structural performance according to Turkish Seismic Code (2007) is presented. Next, 3D finite element models of the bridge are described and modeled using LARSA 4D software, and analytical dynamic characteristics are obtained. Then ambient vibration testing conducted on the bridges under natural excitations and experimental natural frequencies are estimated. Lastly, time history analyses of the bridges under the 1999 Kocaeli, 1992 Erzincan, and 1999 Duzce Earthquakes are performed and seismic performance levels according to TSC2007 are determined. The results show that the damage on the bridges is all under the minimum damage limit which is in the minimum damage region under all three earthquakes.

Seismic Performance Assessment of Hollow Reinforced Concrete and Prestressed Concrete Bridge Columns

  • Kim, Tae-Hoon;Seong, Dai-Jeong;Shin, Hyun Mock
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.3
    • /
    • pp.165-176
    • /
    • 2012
  • The aim of this study is to assess the seismic performance of hollow reinforced concrete and prestressed concrete bridge columns, and to provide data for developing improved seismic design criteria. By using a sophisticated nonlinear finite element analysis program, the accuracy and objectivity of the assessment process can be enhanced. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), is used to analyze reinforced concrete and prestressed concrete structures. Tensile, compressive and shear models of cracked concrete and models of reinforcing and prestressing steel were used to account for the material nonlinearity of reinforced concrete and prestressed concrete. The smeared crack approach was incorporated. The proposed numerical method for the seismic performance assessment of hollow reinforced concrete and prestressed concrete bridge columns is verified by comparing it with the reliable experimental results. Additionally, the studies and discussions presented in this investigation provide an insight into the key behavioral aspects of hollow reinforced concrete and prestressed concrete bridge columns.

Seismic performance of beam-to- SST column connection with external diaphragm

  • Rong, Bin;Yin, Shuhao;Zhang, Ruoyu;Wang, Lei;Yang, Ziheng;Li, Hongtao;Wan, Wenyu
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.633-647
    • /
    • 2020
  • This paper aims to study the seismic performance of external diaphragm connection between SST (square steel tube) column and H-shaped beam through experimental and analytical study involving finite element (FE) method and theoretical analysis. In the experimental study, three external diaphragm connection specimens with weak panel zone were tested under axial pressure on the top of the column and antisymmetric cyclic loads at the beam end to investigate the seismic performance of the panel zone. The hysteretic behavior, failure mode, stiffness and ductility of the specimens were discussed. Key point to be explored was the influence of the thickness of the steel tube flange on the shear capacity of the specimens. In the analytical study, three simplified FE models were developed to simulate the seismic behavior of the specimens for further analysis on the influence of steel tube flange. Finally, four existing calculation formulas for the shear capacity of the external diaphragm connection were evaluated through comparisons with the results of experiments and FE analysis, and application suggestions were put forward.

Linear Seismic Performance Evaluation Procedure of the Low-Rise Reinforced Concrete Facilities (저층 철근 콘크리트 시설물 선형 내진 성능 평가)

  • Kim, Doo-Hwan;Jeong, Ui-Do;Song, Kwan Kwon;Kim, Seong Pil
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.129-135
    • /
    • 2018
  • Following a 5.8 magnitude earthquake on September 12, 2016 in Gyeongju Province, a magnitude 5.4 earthquake occurred in the northern region of Pohang City on November 15, 2017 in South Korea. Only 7.9 % of the building structures are earthquake-resistant, according to the recent survey conducted by the government agencies in October 2017. In this paper, the linear analysis seismic performance evaluation procedure of the existing school structures presented in the revised methodology(Seismic Performance Evaluation Procedure and Rehabilitation Manual for School Facilities) was introduced. In this paper, the linear analysis evaluation procedure presented in the revised methodology was introduced and the seismic performance index of the example structure was evaluated using the linear analysis evaluation procedure. The seismic retrofit was verified by the linear and nonlinear dynamic analyses using Perform 3D. The analysis results show that the dissipated inelastic energy is concentrated on the retrofitted shear wall and the maximum inter-story drift of the stadium model structure with damping system satisfies the requirement of the current code.