• 제목/요약/키워드: semiperfect ring

### MULTIPLICATIVE SET OF IDEMPOTENTS IN A SEMIPERFECT RING

• Park, Sang-Won;Han, Jun-Cheol
• 대한수학회보
• /
• v.48 no.5
• /
• pp.1033-1039
• /
• 2011
• Let R be a ring with identity 1, I(R) be the set of all idempotents in R and G be the group of all units of R. In this paper, we show that for any semiperfect ring R in which 2 = 1+1 is a unit, I(R) is closed under multiplication if and only if R is a direct sum of local rings if and only if the set of all minimal idempotents in R is closed under multiplication and eGe is contained in the group of units of eRe. In particular, for a left Artinian ring in which 2 is a unit, R is a direct sum of local rings if and only if the set of all minimal idempotents in R is closed under multiplication.

### THE STRUCTURE OF SEMIPERFECT RINGS

• Han, Jun-Cheol
• 대한수학회지
• /
• v.45 no.2
• /
• pp.425-433
• /
• 2008
• Let R be a ring with identity $1_R$ and let U(R) denote the group of all units of R. A ring R is called locally finite if every finite subset in it generates a finite semi group multiplicatively. In this paper, some results are obtained as follows: (1) for any semilocal (hence semiperfect) ring R, U(R) is a finite (resp. locally finite) group if and only if R is a finite (resp. locally finite) ring; U(R) is a locally finite group if and only if U$(M_n(R))$ is a locally finite group where $M_n(R)$ is the full matrix ring of $n{\times}n$ matrices over R for any positive integer n; in addition, if $2=1_R+1_R$ is a unit in R, then U(R) is an abelian group if and only if R is a commutative ring; (2) for any semiperfect ring R, if E(R), the set of all idempotents in R, is commuting, then $R/J\cong\oplus_{i=1}^mD_i$ where each $D_i$ is a division ring for some positive integer m and |E(R)|=$2^m$; in addition, if 2=$1_R+1_R$ is a unit in R, then every idempotent is central.

### RINGS WITH THE SYMMETRIC PROPERTY FOR IDEMPOTENT-PRODUCTS

• Han, Juncheol;Sim, Hyo-Seob
• East Asian mathematical journal
• /
• v.34 no.5
• /
• pp.615-621
• /
• 2018
• Let R be a ring with the unity 1, and let e be an idempotent of R. In this paper, we discuss some symmetric property for the set $\{(a_1,a_2,{\cdots},a_n){\in}R^n:a_1a_2{\cdots}a_n=e\}$. We here investigate some properties of those rings with such a symmetric property for an arbitrary idempotent e; some of our results turn out to generalize some known results observed already when n = 2 and e = 0, 1 by several authors. We also focus especially on the case when n = 3 and e = 1. As consequences of our observation, we also give some equivalent conditions to the commutativity for some classes of rings, in terms of the symmetric property.

### Finitely Generated Modules over Semilocal Rings and Characterizations of (Semi-)Perfect Rings

• Chang, Chae-Hoon
• Kyungpook Mathematical Journal
• /
• v.48 no.1
• /
• pp.143-154
• /
• 2008
• Lomp [9] has studied finitely generated projective modules over semilocal rings. He obtained the following: finitely generated projective modules over semilocal rings are semilocal. We shall give necessary and sufficient conditions for finitely generated modules to be semilocal modules. By using a lifting property, we also give characterizations of right perfect (semiperfect) rings. Our main results can be summarized as follows: (1) Let M be a finitely generated module. Then M has finite hollow dimension if and only if M is weakly supplemented if and only if M is semilocal. (2) A ring R is right perfect if and only if every flat right R-module is lifting and every right R-module has a flat cover if and only if every quasi-projective right R-module is lifting. (3) A ring R is semiperfect if and only if every finitely generated flat right R-module is lifting if and only if RR satisfies the lifting property for simple factor modules.

### WEAKLY ⊕-SUPPLEMENTED MODULES AND WEAKLY D2 MODULES

• Hai, Phan The;Kosan, Muhammet Tamer;Quynh, Truong Cong
• 대한수학회보
• /
• v.57 no.3
• /
• pp.691-707
• /
• 2020
• In this paper, we introduce and study the notions of weakly ⊕-supplemented modules, weakly D2 modules and weakly D2-covers. A right R-module M is called weakly ⊕-supplemented if every non-small submodule of M has a supplement that is not essential in M, and module MR is called weakly D2 if it satisfies the condition: for every s ∈ S and s ≠ 0, if there exists n ∈ ℕ such that sn ≠ 0 and Im(sn) is a direct summand of M, then Ker(sn) is a direct summand of M. The class of weakly ⊕-supplemented-modules and weakly D2 modules contains ⊕-supplemented modules and D2 modules, respectively, and they are equivalent in case M is uniform, and projective, respectively.

### Some Results on δ-Semiperfect Rings and δ-Supplemented Modules

• ABDIOGLU, CIHAT;SAHINKAYA, SERAP
• Kyungpook Mathematical Journal
• /
• v.55 no.2
• /
• pp.289-300
• /
• 2015
• In [9], the author extends the definition of lifting and supplemented modules to ${\delta}$-lifting and ${\delta}$-supplemented by replacing "small submodule" with "${\delta}$-small submodule" introduced by Zhou in [13]. The aim of this paper is to show new properties of ${\delta}$-lifting and ${\delta}$-supplemented modules. Especially, we show that any finite direct sum of ${\delta}$-hollow modules is ${\delta}$-supplemented. On the other hand, the notion of amply ${\delta}$-supplemented modules is studied as a generalization of amply supplemented modules and several properties of these modules are given. We also prove that a module M is Artinian if and only if M is amply ${\delta}$-supplemented and satisfies Descending Chain Condition (DCC) on ${\delta}$-supplemented modules and on ${\delta}$-small submodules. Finally, we obtain the following result: a ring R is right Artinian if and only if R is a ${\delta}$-semiperfect ring which satisfies DCC on ${\delta}$-small right ideals of R.