• Title, Summary, Keyword: sigma-semiprime ring

Search Result 10, Processing Time 0.029 seconds

SKEW POLYNOMIAL RINGS OVER SEMIPRIME RINGS

  • Hong, Chan-Yong;Kim, Nam-Kyun;Lee, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.879-897
    • /
    • 2010
  • Y. Hirano introduced the concept of a quasi-Armendariz ring which extends both Armendariz rings and semiprime rings. A ring R is called quasi-Armendariz if $a_iRb_j$ = 0 for each i, j whenever polynomials $f(x)\;=\;\sum_{i=0}^ma_ix^i$, $g(x)\;=\;\sum_{j=0}^mb_jx^j\;{\in}\;R[x]$ satisfy f(x)R[x]g(x) = 0. In this paper, we first extend the quasi-Armendariz property of semiprime rings to the skew polynomial rings, that is, we show that if R is a semiprime ring with an epimorphism $\sigma$, then f(x)R[x; $\sigma$]g(x) = 0 implies $a_iR{\sigma}^{i+k}(b_j)=0$ for any integer k $\geq$ 0 and i, j, where $f(x)\;=\;\sum_{i=0}^ma_ix^i$, $g(x)\;=\;\sum_{j=0}^mb_jx^j\;{\in}\;R[x,\;{\sigma}]$. Moreover, we extend this property to the skew monoid rings, the Ore extensions of several types, and skew power series ring, etc. Next we define $\sigma$-skew quasi-Armendariz rings for an endomorphism $\sigma$ of a ring R. Then we study several extensions of $\sigma$-skew quasi-Armendariz rings which extend known results for quasi-Armendariz rings and $\sigma$-skew Armendariz rings.

ON QUASI-RIGID IDEALS AND RINGS

  • Hong, Chan-Yong;Kim, Nam-Kyun;Kwak, Tai-Keun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.385-399
    • /
    • 2010
  • Let $\sigma$ be an endomorphism and I a $\sigma$-ideal of a ring R. Pearson and Stephenson called I a $\sigma$-semiprime ideal if whenever A is an ideal of R and m is an integer such that $A{\sigma}^t(A)\;{\subseteq}\;I$ for all $t\;{\geq}\;m$, then $A\;{\subseteq}\;I$, where $\sigma$ is an automorphism, and Hong et al. called I a $\sigma$-rigid ideal if $a{\sigma}(a)\;{\in}\;I$ implies a $a\;{\in}\;I$ for $a\;{\in}\;R$. Notice that R is called a $\sigma$-semiprime ring (resp., a $\sigma$-rigid ring) if the zero ideal of R is a $\sigma$-semiprime ideal (resp., a $\sigma$-rigid ideal). Every $\sigma$-rigid ideal is a $\sigma$-semiprime ideal for an automorphism $\sigma$, but the converse does not hold, in general. We, in this paper, introduce the quasi $\sigma$-rigidness of ideals and rings for an automorphism $\sigma$ which is in between the $\sigma$-rigidness and the $\sigma$-semiprimeness, and study their related properties. A number of connections between the quasi $\sigma$-rigidness of a ring R and one of the Ore extension $R[x;\;{\sigma},\;{\delta}]$ of R are also investigated. In particular, R is a (principally) quasi-Baer ring if and only if $R[x;\;{\sigma},\;{\delta}]$ is a (principally) quasi-Baer ring, when R is a quasi $\sigma$-rigid ring.

PRIME RADICALS OF SKEW LAURENT POLYNOMIAL RINGS

  • Han, Jun-Cheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.477-484
    • /
    • 2005
  • Let R be a ring with an automorphism 17. An ideal [ of R is ($\sigma$-ideal of R if $\sigma$(I).= I. A proper ideal P of R is ($\sigma$-prime ideal of R if P is a $\sigma$-ideal of R and for $\sigma$-ideals I and J of R, IJ $\subseteq$ P implies that I $\subseteq$ P or J $\subseteq$ P. A proper ideal Q of R is $\sigma$-semiprime ideal of Q if Q is a $\sigma$-ideal and for a $\sigma$-ideal I of R, I$^{2}$ $\subseteq$ Q implies that I $\subseteq$ Q. The $\sigma$-prime radical is defined by the intersection of all $\sigma$-prime ideals of R and is denoted by P$_{(R). In this paper, the following results are obtained: (1) For a principal ideal domain R, P$_{(R) is the smallest $\sigma$-semiprime ideal of R; (2) For any ring R with an automorphism $\sigma$ and for a skew Laurent polynomial ring R[x, x$^{-1}$; $\sigma$], the prime radical of R[x, x$^{-1}$; $\sigma$] is equal to P$_{(R)[x, x$^{-1}$; $\sigma$ ].

QUASI-ARMENDARIZ PROPERTY FOR SKEW POLYNOMIAL RINGS

  • Baser, Muhittin;Kwa, Tai Keun
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.557-573
    • /
    • 2011
  • The concept of the quasi-Armendariz property of rings properly contains Armendariz rings and semiprime rings. In this paper, we extend the quasi-Armendariz property for a polynomial ring to the skew polynomial ring, hence we call such ring a ${\sigma}$-quasi-Armendariz ring for a ring endomorphism ${\sigma}$, and investigate its structures, several extensions and related properties. In particular, we study the semiprimeness and the quasi-Armendariz property between a ring R and the skew polynomial ring R[x;${\sigma}$$] of R, and so these provide us with an opportunity to study quasi-Armendariz rings and semiprime rings in a general setting, and several known results follow as consequences of our results.

PRIME RADICALS IN ORE EXTENSIONS

  • Han, Jun-Cheol
    • East Asian mathematical journal
    • /
    • v.18 no.2
    • /
    • pp.271-282
    • /
    • 2002
  • Let R be a ring with an endomorphism $\sigma$ and a derivation $\delta$. An ideal I of R is ($\sigma,\;\delta$)-ideal of R if $\sigma(I){\subseteq}I$ and $\delta(I){\subseteq}I$. An ideal P of R is a ($\sigma,\;\delta$)-prime ideal of R if P(${\neq}R$) is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideals I and J of R, $IJ{\subseteq}P$ implies that $I{\subseteq}P$ or $J{\subseteq}P$. An ideal Q of R is ($\sigma,\;\delta$)-semiprime ideal of R if Q is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideal I of R, $I^2{\subseteq}Q$ implies that $I{\subseteq}Q$. The ($\sigma,\;\delta$)-prime radical (resp. prime radical) is defined by the intersection of all ($\sigma,\;\delta$)-prime ideals (resp. prime ideals) of R and is denoted by $P_{(\sigma,\delta)}(R)$(resp. P(R)). In this paper, the following results are obtained: (1) $P_{(\sigma,\delta)}(R)$ is the smallest ($\sigma,\;\delta$)-semiprime ideal of R; (2) For every extended endomorphism $\bar{\sigma}$ of $\sigma$, the $\bar{\sigma}$-prime radical of an Ore extension $P(R[x;\sigma,\delta])$ is equal to $P_{\sigma,\delta}(R)[x;\sigma,\delta]$.

  • PDF

SKEW n-DERIVATIONS ON SEMIPRIME RINGS

  • Xu, Xiaowei;Liu, Yang;Zhang, Wei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1863-1871
    • /
    • 2013
  • For a ring R with an automorphism ${\sigma}$, an n-additive mapping ${\Delta}:R{\times}R{\times}{\cdots}{\times}R{\rightarrow}R$ is called a skew n-derivation with respect to ${\sigma}$ if it is always a ${\sigma}$-derivation of R for each argument. Namely, if n - 1 of the arguments are fixed, then ${\Delta}$ is a ${\sigma}$-derivation on the remaining argument. In this short note, from Bre$\check{s}$ar Theorems, we prove that a skew n-derivation ($n{\geq}3$) on a semiprime ring R must map into the center of R.

ON A LIE RING OF GENERALIZED INNER DERIVATIONS

  • Aydin, Neset;Turkmen, Selin
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.827-833
    • /
    • 2017
  • In this paper, we define a set including of all $f_a$ with $a{\in}R$ generalized derivations of R and is denoted by $f_R$. It is proved that (i) the mapping $g:L(R){\rightarrow}f_R$ given by g (a) = f-a for all $a{\in}R$ is a Lie epimorphism with kernel $N_{{\sigma},{\tau}}$ ; (ii) if R is a semiprime ring and ${\sigma}$ is an epimorphism of R, the mapping $h:f_R{\rightarrow}I(R)$ given by $h(f_a)=i_{{\sigma}(-a)}$ is a Lie epimorphism with kernel $l(f_R)$ ; (iii) if $f_R$ is a prime Lie ring and A, B are Lie ideals of R, then $[f_A,f_B]=(0)$ implies that either $f_A=(0)$ or $f_B=(0)$.

PRIME M-IDEALS, M-PRIME SUBMODULES, M-PRIME RADICAL AND M-BAER'S LOWER NILRADICAL OF MODULES

  • Beachy, John A.;Behboodi, Mahmood;Yazdi, Faezeh
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1271-1290
    • /
    • 2013
  • Let M be a fixed left R-module. For a left R-module X, we introduce the notion of M-prime (resp. M-semiprime) submodule of X such that in the case M=R, it coincides with prime (resp. semiprime) submodule of X. Other concepts encountered in the general theory are M-$m$-system sets, M-$n$-system sets, M-prime radical and M-Baer's lower nilradical of modules. Relationships between these concepts and basic properties are established. In particular, we identify certain submodules of M, called "primeM-ideals", that play a role analogous to that of prime (two-sided) ideals in the ring R. Using this definition, we show that if M satisfies condition H (defined later) and $Hom_R(M,X){\neq}0$ for all modules X in the category ${\sigma}[M]$, then there is a one-to-one correspondence between isomorphism classes of indecomposable M-injective modules in ${\sigma}[M]$ and prime M-ideals of M. Also, we investigate the prime M-ideals, M-prime submodules and M-prime radical of Artinian modules.