• Title, Summary, Keyword: single-cell gel electrophoresis (SCGE)

Search Result 40, Processing Time 0.029 seconds

Single Cell Gel Electrophoresis (comet assay) to Detect DNA Damage and Apoptosis in Cell Level (DNA damage와 Apoptosis를 정량화하는 단세포전기영동법)

  • 류재천;김현주;서영록;김경란
    • Environmental Mutagens and Carcinogens
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 1997
  • The single cell gel electrophoressis(SCGE) assay, also known as the comet assay, is a rapid, simple, visual and sensitive technique for measuring and analysing DNA breakage in mammalian cells. The SCGE or comet assay is a promising test for the detection of DNA damage and repair in individnal cells. It has widespread potential applications in DNA damage and repair studies, genotoxicity testing and biomonitoring. In this microgel electrophoresis technique, cells are embedded in agarose gel on microscope slides, iysed and electrophoresed under alkaline conditions. Cells with increased DNA damage display increased migration of DNA from the nucleus towards the anode. The length of DNA migration indicates the amount of DNA breakage in the cell. The comet assay is also capable of identifying apoptotic cells which contain highly fragmented DNA. Here we review the development of the SCGE assay, existing protocols for the detection and analysis of comets, the relevant underlying principles determining the behaviour of DNA and the potential applications of the technique.

  • PDF

Evaluation of protective effect of peach kernel extracts on radiation-induced DNA damage in human blood lymphocytes in the single cell gel electrophoresis assay (단세포 겔 전기영동법을 이용한 사람 림프구 DNA 손상에 대한 복숭아씨 추출물의 방사선 방어효과 평가)

  • Kim, Jin-Kyu;Park, Tae-Won;Lee, Chang-Joo;Chai, Young-Gyu
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.2
    • /
    • pp.93-99
    • /
    • 1999
  • The alkaline single-cell gel electrophoresis (SCGE) assay, called the comet assay, has been applied to the detection of DNA damage from a number of chemical and biological factors in vivo and in vitro. The comet assay is a novel method to assess DNA single-strand breaks, alkali-labile sites in individual cells. The effect of peach kernel extracts on radiation-induced DNA damage in human blood lymphocytes was evaluated by the SCGE assay. The lymphocytes, with or without pretreatment of the extracts, were exposed to 0, 0.1, 0.3, 0.5, 1.0 and 2.0 Gy of $^{60}Co$ gamma ray. Significantly increased tail moment, which was a marker of DNA strand breaks in the comet assay, showed an excellent dose-response relationship. The treatment of the peach kernel extracts reduced the DNA damage by 30 % in irradiated groups as compared to that in non-treated control groups. The result indicates that the extracts shows radioprotective effect on lymphocyte DNA when assessed by the comet assay.

  • PDF

Application of the SCGE Assay for Detecting Induced DNA Damage in Plant Leaves

  • Kim, Jin Kyu;Song, Hi Sup;Kim, Do Young;Gichner, Tomas
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • /
    • pp.68-73
    • /
    • 2003
  • The possibility of using the alkaline protocol of the single cell gel electrophoresis (SCGE) assay as a method for detecting induced DNA damage has been studied for six major plants. The EMS was applied as a model genotoxic agent on young excised leaves of the tested crops for 18 h at 26$^{\circ}C$ in the dark. With increasing concentrations of 0 to 10 mM EMS, the DNA damage, expressed by the averaged median tail moment values, significantly increased in nuclei of all plants studied. As the results, no correlation between the diameter of nuclei and sensitivity to EMS treatment was observed. The data obtained demonstrate the feasibility of using the SCGE assay for detecting induced DNA damage in plants.

  • PDF

Use of the In Vivo Single-cell Gel Electrophoresis Assay for Evaluating Genotoxicity in Clam (Single-cell Gel Electrophoresis Assay에 의한 대합에서의 In Vivo 유전독성 평가)

  • Kim Il-Yang;Hyun Chang-Kee
    • Toxicological Research
    • /
    • v.20 no.3
    • /
    • pp.225-232
    • /
    • 2004
  • The suitability of the single cell gel electrophoresis (SCGE) assay as a test for the monitoring of genotoxicity of aquatic environment was evaluated. The SCGE assay was employed to detect DNA damage induced in clam (Spisula sachalinensis) exposed to a direct mutagen, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or an indirect mutagen, benzo[a]pyrene (B[a]P). The cells of gill and digestive glands were isolated from clam by homogenization, which was the optimized cell dissociation method, and the level of DNA damage was assessed and expressed as mean tail length. In the gill cells, significant dose- and time-dependent increase was observed in the mean tail length at the concentration from 0.01 to 0.5 ppm MNNG for 96 h. The linear correlation between relative dam-age index (RDI) values was suggested to provide criteria of genotoxicity monitoring for direct acting mutagen. The dose- and time-dependent responses of the digestive glands cells were less sensitive than those of the gill cells. In contrast, the genotoxic response resulting from the exposure of 0.01~1.0 ppm B[a]P to clam revealed a higher sensitivity in the digestive glands cells than the gill cells. The comparison between the time profiles of genotoxic responses in clam and carp, the latter had been obtained in our previous study, indicated that the metabolism of genotoxic compounds in the two aquatic organisms were quite different each other. We conclude that the SCGE assay has the potential as a screening test for routine genotoxicity monitoring of aquatic organisms because of its higher sensitivity and simplicity.

Assessment of DNA damage and Chromosome aberration in human lymphocyte exposed to low dose radiation detected by FISH(fluorescence in situ hybridization) and SCGE(single cell gel electrophoresis) (FISH기법 및 단세포전기영동기법을 이용한 저선량 방사선에 의한 DNA 상해 및 염색체이상 평가)

  • Chung, Hai-Won;Kim, Su-Young;Kim, Byung-Mo;Kim, Sun-Jin;Kim, Tae-Hwan;Cho, Chul-Koo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.4
    • /
    • pp.223-232
    • /
    • 2000
  • Comparative study was performed for the assessment of DNA damage and Chromosomal aberration in human lymphocyte exposed to low dose radiation using fluorescence in situ hybridization(FISH) and single cell gel electrophoresis(SCGE). Chromosomal aberrations in human lymphocytes exposed to radiation at doses of 5, 10, 30 and 50cGy were analysed with whole chromosome-specific probes by human chromosome 1, 2 and 4 according to PAINT system. FISH with chromosome-specific probe has been used to be a valid and rapid method fer detection of chromosome rearrangements induced by low dose radiation. The frequencies of stable translocation per cell equivalents were 0.0116, 0.0375, 0.040f, 0.0727 and 0.0814 for 0, 5, 10, 30 and 50cGy, respectively, and those of dicentric were 0.00, 0.0125, 0.174, 0.0291 and 0.0407 respectively. Radiation induced DNA damage in human lymphocyte in a dose-dependent manner at low doses from 5cGy to 50cGy, which were analysed by single tell gel electrophoresis(SCGE). From above results, FISH seemed to be useful for radiation biodosimetry by which the frequencies of stable aberrations in human lymphocyte can be observed more easily than by conventional method and SCGE also seemed to be sensitive method f9r detecting DNA damage by low dose radiation exposure, so that those methods will improve our technique to perform meaningful biodosimetry for radiation at low doses.

  • PDF

ANALYSIS OF CHROMOSOME ABERRATION, SISTER CHROMATID EXCHANGE, MICRONUCLEI AND SINGLE CELL GEL ELECTROPHORESIS IN HUMAN LYMPHOCYTES EXPOSED IN VITRO TO BISPHENOL A AND DIETHYLSTILBESTROL

  • Kim, Byeong-Mo;Chung, Hai-Won
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • /
    • pp.176-176
    • /
    • 2001
  • Endocrine disruptors have been implicated in carcinogenesis in animal studies, but carcinogenetic effects on human remain controversial. In order to examine the genotoxicity of two common endocrine disruptors, Bisphenol A and Diethylstilbestrol, cytogenetic endpoints including chromosome aberration(CA), sister chromatid exchange (SCE), micronuclei (MN) analyses and DNA damage by single cell gel electrophoresis (SCGE) were assayed.(omitted)

  • PDF

Evaluation of Protective Effects of Houttuynia cordata on H2O2-Induced Oxidative DNA Damage Using an Alkaline Comet Assay in Human HepG2 Cells

  • Hah, Dae-Sik;Kim, Chung-Hui;Ryu, Jae-Doo;Kim, Eui-Kyung;Kim, Jong-Shu
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.25-31
    • /
    • 2007
  • To evaluate the protective effect of Houttuynia cordata on hydrogen peroxide-induced oxidative DNA damage in HepG2 cell line, we used an alkaline single-cell gel electrophoresis (SCGE; comet assay). The DNA damage was analyzed by tail moment (TM) and tail length (TL), which used markers of DNA strand breaks in SCGE. The $100{\mu}g/ml$ of methanolic extract of Houttuynia cordata root showed significant protective effects (p < 0.01) against hydrogen peroxide-induced DNA damage in HepG2 cells and increased cell viability against hydrogen peroxide. The results of this study indicate that Houttuynia cordata root methanol extract acts as a potential antioxidant, and exhibits potential anticancer properties, which may provide a clue to find applications in new pharmaceuticals for oxidative stability.

Protective effect of Ginseng Petroleum Ether Extract Against Lipid Peroxidation and Oxidative DNA Damage (인삼지용성성분의 지질과산화 및 산화적 DNA손상에 대한 억제효과)

  • 허문영
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.4
    • /
    • pp.315-320
    • /
    • 1997
  • Panax ginseng C.A. Meyer has been extensively used in the traditional oriental medicine as a restorative, tonic and prophylatic agent. This study was devised to develop a chemopreventive agent from panax ginseng to be able to suppress the genotoxicity and oxidative damage by ractive oxygen species, which are involved with cancer or aging. Ginseng petroleum ether extract (GPE) and one of its fraction, P2, showed an antioxidative effect on the lipid peroxidiphenyl-2-picryl hydrazil (DppH) radical generation. They also showed the suppressive effect of H2O2 or KO2 induced DNA damage by single cell gel electrophoresis (SCGE). Results from our study indicate that GPE and P2 are capable of protecting lipid peroxidation, and oxidative DNA damage. Therefore, GPE and P2 may be useful chempreventive agents which are involved with cancer and aging.

  • PDF

Analysis of chromosome aberration, sister chromatid exchange, micronuclei and single cell gel electrophoresis in human lymphocytes exposed in vitro to Bisphenol A and Diethylstilbestrol (비스페놀 A 및 Diethylstilbestrol의 유전독성 평가를 위한 염색체이상, 자매염색분체교환, 소핵형성, 단일세포 겔 전기영동법의 활용)

  • 김병모;정해원
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.2
    • /
    • pp.135-141
    • /
    • 2001
  • Endocrine disruptors have been implicated in carcinogenesis in animal studies, but carcinogenetic effects on human remain controversial. In order to examine the genotoxicity of two common endocrine disruptors, Bisphenol A and Diethylstilbestrol, cytogenetic endpoints including chromosome aberration (CA), sister chromatid exchange (SCE), micronuclei (MN) analyses and DNA damage by single cell gel electrophoresis (SCGE) were assessed. The effects of Bisphenol A and Diethylstilbestrol on the frequencies of CA and MN were increased in a dose-dependent manner and that of Bispheol A was more significant by Kendall'$\tau$test. Bisphenol A and Diethylstilbestrol also increased the frequency of SCE. Bisphenol A and Diethylstilbestrol induced DNA damage in a dose-dependent manner and the DNA damage induced by Diethylstilbestrol in human blood lymphocytes was more significant.

  • PDF