• Title, Summary, Keyword: solution styrene butadiene rubber

Search Result 20, Processing Time 0.064 seconds

Building Calibration Curve for Py-GC/MS Analysis of SBR/BR Blend Rubber Compounds

  • Chae, Eunji;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.281-288
    • /
    • 2020
  • A calibration curve is needed to determine the SBR and BR blend ratio of SBR/BR blend rubber compounds using pyrolysis-gas chromatography/mass chromatography (Py-GC/MS) or Py-GC. In general, a calibration curve is obtained using reference SBR/BR vulcanizates with various blend ratios. In this study, the calibration curves were obtained using reference samples made of rubber solutions and were compared to those plotted using the reference SBR/BR vulcanizates. Calibration curves using variations of 1,3-butadiene/styrene, 4-vinylcyclohexene (VCH)/styrene, 2-phenylpropene (PhP)/butadiene, PhP/VCH, 4-phenylcyclohexene (PhCH)/butadiene, and PhCH/VCH ratios with the BR content were examined for the suitability. We found that the calibration curves obtained using the mixed rubber solution references (1,3-butadiene/styrene and PhP/butadiene) could replace those constructed using the reference SBR/BR vulcanizates. The calibration curves of 1,3-butadiene/styrene and PhP/butadiene obtained using the raw references can be used for the determination of the SBR/BR blend ratios by applying some correction factors.

Influence of Extender Oil on Properties of Solution Styrene-Butadiene Rubber Composites

  • Choi, Sung-Seen;Ko, Eunah
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.196-204
    • /
    • 2015
  • Crosslink density of a rubber vulcanizate determines the chemical and physical properties, while bound rubber is an important factor to estimate reinforcement of a filled rubber compound. Extender oil is added to a raw rubber with very high molecular weight for improving processability of a rubber composite. Influence of extender oil on crosslink density, bound rubber formation, and physical properties of solution styrene-butadiene rubber (SSBR) composites with differing microstructures was investigated. Crosslink densities of non-oil-extended SSBR (NO-SSBR) vulcanizates were higher than those of oil-extended SSBR (OE-SSBR) ones. Bound rubber contents of NO-SSBR compounds were also greater than those of OE-SSBR ones. The experimental results could be explained by interfering of extender oil. The OE-SSBR vulcanizates had low modulus but long elongation at break, whereas the NO-SSBR ones had high modulus but short elongation at break. It was found that the crosslink densities affected the physical properties more than the bound rubber contents. The moduli increased with increase in the crosslink density irrespective of extender oil, while the elongation at break decreased. Each variation of the tensile strengths of NO-SSBR and OE-SSBR vulcanizates with the crosslink density showed a decreasing trend. Tear strength of the OE-SSBR vulcanizate increased with increase in the crosslink density, whereas variation of the tear strength of NO-SSBR vulcanizate with the crosslink density showed a weak decreasing trend.

A rapid and easy fabrication of plant-tissue biosensor using rubber binder and its practicability test (고무 결합재를 이용한 식물조직 바이오센서의 간편한 제작과 응용성)

  • Lee, Beom-Gyu;Rhyu, Keun-Bae;Yoon, Kil-Joong
    • Analytical Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.355-359
    • /
    • 2009
  • An enzyme electrode bound by rubber solution was newly constructed and the test of its practicability were carried out. The binder of carbon powder was styrene-butadiene rubber dissolved in toluene and enzyme source was ground tissue of cabbage root. Volatilization of the solvent made the electrode material possess a mechanical robustness and a fast signal appearance. The electrode showed electrochemically irreversible characteristics and a powerful catalytic power (detection limit=$5.0{\times}10^{-5}M$, S/N=2). The double reciprocal plot of signal current and substrate concentration was ideally linear and the symmetry factor and exchange current density of the electrode used in this work were 0.35 and $4.93{\times}10^{-5}Acm^{-2}$ respectively.

Studies on the Physical Properties of Synthetic Rubber Blends Containing Rein-forcing Fillers (보강성 충전제를 함유한 합성고무 블렌드의 물리적 특성에 관한 연구)

  • Go, Jin-Hwan;Lee, Seog
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.231-237
    • /
    • 1998
  • In order to investigate the physical properties of rubber blend compound, this experiment was carried out on the cure rate, loss tangent, reinforcement and abrasion properties of S-SBR (solution styrene-butadiene rubber) blends containing silane coupled silica and E-SBR (emulsion styrene-butadiene rubber) blends containing carbon black as a model compound. E-SBR blend showed the highest total bound rubber(TBR), while S-SBR blends showed constant TBR level regardless of rubber type. Rapid cure rate was achieved when the styrene and vinyl content of rubber microstructure decreased and TBR content of rubber compounds increased. The modulus as the index of rubber reinforcement showed the linear relation with TBR content. The large amount of PICO loss was observed when the styrene and vinyl content of rubber microstructure increased, while the small amount of PICO loss was observed when the ratio of bu-tadiene increased in the S-SBR blends with silane copuled silica. The high loss tangent at $0^{\circ}C$, the low loss tangent at $60^{\circ}C$, and the large difference of loss tangent were shown in the S-SBR blends with high styrene content compared to E-SBR blend.

  • PDF

A Study on Properties of SSBR/NdBR Rubber Composites Reinforced by Silica

  • Lee, Dam-Hee;Li, Xiang Xu;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.202-206
    • /
    • 2018
  • Five solution styrene butadiene rubber/neodymium butadiene rubber (SSBR/NdBR) composites were manufactured using different ratios of SSBR and NdBR. In this study, the composites were reinforced with NdBR and silica to confirm the physical properties of SSBR used for treads of automobile tires and the dispersibility with silica. The morphologies of the rubber composites were observed using field-emission scanning electron microscopy (FE-SEM). The crosslinking behaviors of the composites were tested using a rubber process analyzer (RPA), and the abrasion resistances were tested using a National Bureau of Standards (NBS) abrasion tester. The hardness values, tensile strengths, and cold resistances of the composites were also tested according to ASTM standards. Increased NdBR content yielded composites with excellent crosslinking properties, abrasion resistances, hardnesses, tensile strengths, and cold resistances. The crosslinking point increased due to the double bond in NdBR, thereby increasing the degree of crosslinking in the composites. The NdBR-reinforced composites exhibited excellent abrasion resistances, which is explained as follows. In SSBR, a breakage is permanent because a resonance structure between styrene and SSBR forms when the molecular backbone is broken during the abrasion process. However, NdBR forms an additional crosslink due to the breakdown of the molecular backbone and high reactivity of the radicals produced. In addition, the low glass transition temperature (Tg) of NdBR provided the rubber composites with excellent cold resistances.

Study on the Change of Physical Properties with Silica Contents in Solution Styrene-Butadiene Rubber (SSBR)/Silica Composites

  • Kim, Tae Yeop;Won, Sung Yeon;Kang, Shin Hye;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.17-21
    • /
    • 2017
  • The optimum mixing conditions of silica and silane containing rubber composites were evaluated by investigating the properties of rubber composites prepared with a silica composition of 10, 20, 40, 60, and 80 g, respectively. The crosslinking rate decreased with increasing silica content, with he promoters being adsorbed on the silica surface with in the rubber composite. As a result, the increase in crosslinking time resulted in the destruction of the silica structure. The increase of the bound rubber content due to the destruction of the silica structure inhibited the chain motion of the polymer molecules and reduced the cohesion of the silica itself. Finally, the increase of silica content showed the increase of hardness, tensile strength, and storage modulus of rubber composites.

Preparation of Cross-linked Asymmetric Membrane and Control of Its Morphology and Mechanical Property

  • Hong, Byung-Pyo;Ko, Moon-Young;Kwon, Byeong-Min;Byun, Hong-Sik
    • Korean Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Polystyrene-co-divinylbenzene (PS-co-DVB) asymmetric membranes were prepared. In order to control their structure and mechanical properties the degree of cross-linking and the composition of casting solution were varied. The rubber added PS-DVB membranes was also prepared to overcome the mechanical limitation of cross-linked membrane, and their mechanical properties were investigated. It was revealed that the concentration of polymer in the casting solution affected the determination of skin formation. When the PS-co-DVB membrane consists of styrene-butadiene (SB) rubber or liquid polybutadiene (PBD), the structures formed showed that the PS content in the PS/DVB system played an important role in determining the porous sublayer structure.

Zinc Surfactant Effects on Nr/Tespd/Silica and SBR/Tespd/Silica Compounds

  • Kim, Kwang-Jea;Vanderkooi, John
    • Elastomers and Composites
    • /
    • v.39 no.4
    • /
    • pp.263-273
    • /
    • 2004
  • The effects of zinc surfactant (ZB) on the bis(triethoxysilylpropyl)disulfide (TESPD)-silica mixture in natural rubber (NR) and solution butadiene-co-styrene rubber(S-SBR) were compared with respect to their rheological property, processability, physical properties, and silica dispersion. In the NR compound, addition of the ZB increased the reversion resistance time (T-2), the tensile modulus, and the BO time; however, lowered the viscosity, the HBU, and tans values. In the S-SBR copound, addition of the ZB increased the $tan{\delta}$ values while lowered the T-2, the tensile modulus the BO time, the viscosity, and the HBU of the compound. In the NR compounds, addition of the ZB significantly increased the processability and mechanical property. However, in the S-SBR compounds, it improved the processability the mechanical property was not improved.

Swelling Ratio and Mechanical Properties of SBR/organoclay Nanocomposites according to the Mixing Temperature; using 3-Aminopropyltriethoxysilane as a Modifier and the Latex Method for Manufacturing (유기화제로 3-aminopropyltriethoxysilane 을 이용하여 라텍스법으로 제조된 SBR/organoclay 컴파운드의 혼련 온도에 따른 팽윤도 및 기계적 물성)

  • Kim, Wook-Soo;Park, Deuk-Joo;Kang, Yun-Hee;Ha, Ki-Ryong;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.112-121
    • /
    • 2010
  • In this study, styrene butadiene rubber(SBR)/organoclay nanocomposites were manufactured using the latex method with 3-aminopropyltriethoxysilane(APTES) as a modifier. The X-ray diffraction(XRD), transmission electron microscopy(TEM) images, Fourier transform infrared(FTIR) spectroscopy, swelling ratio and mechanical properties were measured in order to study the interaction between filler and rubber according to the mixing temperature in the internal mixer. In the case of SBR/APTES-MMT compounds, the dispersion of the silicates within the rubber matrix was enhanced, and thereby, the mechanical properties were improved. The characteristic bands of Si-O-C in APTES disappeared after hydrolysis reaction in the MMT-suspension solution and the peak of hydroxyl group was increased. Therefore the formation of chemical bonds between the hydroxyl group generated from APTES on the silicate surface and the ethoxy group of bis(triethoxysilylpropyl) tetrasulfide(TESPT) was possible. Consequently, the 300% modulus of SBR/APTES-MMT compounds was further improved in the case of using TESPT as a coupling agent. However, the silanization reaction between APTES and TESPT was not affected significantly according to the increase of mixing temperature in the internal mixer.