• Title, Summary, Keyword: soy gel

Search Result 70, Processing Time 0.036 seconds

The Effects of Soy Protein Isolate on Quality and Acceptability of Soy Protein Isolate Substituted Beef Patties and Ice Cream (분리대두단백(分離大豆蛋白)의 Beef Patties와 아이스크림에 대(對)한 이용효과)

  • Kim, Chul-Jin;Byun, Si-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.190-193
    • /
    • 1977
  • In our previous report (Korean J. Food Sci. and Technol., 9, 123, 1977) we have studied the functional properties of soy protein isolates prepared from defatted soybean meal. For the practical application of the data described, beef patties substituted with SPI, and imitatied ice cream were prepared and sensory evaluations were carried out. The sensory analyses indicated that the beef patties substituted with gelated SPI to 30% have no detectable difference to the control at the significant level of 0.01. The imitation of ice cream whose milk-solid-not-fat was substituted with soy protein isolates showed the same texture as the control. Flavor of ice cream, however, has significant difference to the control due to beany-off flavor. Therefore removal of beany-off flavor is required for the substitution in ice cream.

  • PDF

Changes of Emulsifying and Foaming Properties of Soy Protein with an Calcium , HCI and Microbial IJ-3 Strain Enzyme

  • Park, Yang-Won;Kim, Young-Jeon
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.53-58
    • /
    • 1996
  • The characterstics of the soy protein curd(eczyme-, HCI- and Ca-surd) were shown by scanning electron micrographs and gel electrophoreis. The emulsion stability of enzyme-curd showed high value in the range of pH 2~10and wide range of temperature(20~8$0^{\circ}C$). While at the isoelectric point(pH5.0), the emulsion stability of the HCI-and Ca-curd was decreased remarkably, and the emulsion stability of temperature was reduced quickly to the 60% and 40% at the 4$0^{\circ}C$. The foam stability of enzyme-curd was slightly higher than that HCI-and CA-curd in all ranges of pH and temperature. The feature of SEM of enzyme-cured produced degradation products faster than that of the HCI- and Ca-curd.

  • PDF

대두가수분해물로부터 새로운 항혈전성 펩타이드, SSGE와 DEE의 분리

  • Lee, Gyeong-Ae;Kim, Seung-Ho
    • Bulletin of Food Technology
    • /
    • v.17 no.3
    • /
    • pp.69-74
    • /
    • 2004
  • A soy protein hydrolysate was found to inhibit rat platelet aggregation induced by ADP, an aggregating agent. To find out its principal antiplatelet peptide(s), the soy protein hydrolysate was separated successively by gel filtration chromatography, revere-phase HPLC, and cation exchange HPLC. During the course of separation, we observed that most fractions had antiplatelet effects, which suggests that most peptides have some degree of antiplatelet effect. Following the inhibitory fractions, we purified and identified two new peptides, SSGE and DEE, by LC-electrospray ionization MS and peptide equencing. Both peptides were highly hydrophilic. The concentrations to obtain 50% inhibition ($IC_50$) of the aggregation intensity were approximately $\458muM$ and $\485muM$, respectively, for SSGE and DEE.

  • PDF

Effects of Additives on the Physical Properties of Antarctic Krill Euphausia superba Surimi (남극 크릴(Euphausia superba) 연육의 물성에 대한 첨가제의 영향)

  • Chae, Yeon-Joo;Choi, Eun-Hye;Lee, Yang-Bong;Chun, Byung-Soo;Kim, Seon-Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.4
    • /
    • pp.347-355
    • /
    • 2014
  • This study examined the effects of additives on the physical properties of surimi made from Antarctic krill Euphausia superba. Krill surimi was prepared from krill meat with an added cryoprotectant (sugar 6%, polyphosphate 0.2%). Krill surimi without additives does not form a gel. In order to enhance the gelling of krill surimi, additives such as soy protein isolate (SPI), guar gum, carrageenan, and wheat starch were examined. Of these, SPI had the highest gel-forming activity, while guar gum, carrageenan, and wheat starch had decreasing gel-forming activity and negative effects on other physical properties as their concentrations were increased. In addition, SPI enhanced the gel strength and physical properties of krill surimi. The fluoride and astaxanthin contents of krill surimi with added SPI were 55.0 mg/kg and 0.8 mg/kg, respectively.

Modification of Functional Properties of Soy Protein Isolate by Proteolytic Enzymes (단백분해효소에 의한 대두단백의 기능적 특성변화)

  • Cha, Myeong-Hwa;Yoon, Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.39-45
    • /
    • 1993
  • The effects of enzymatic modification with pepsin and actinidin was studied on molecular weight distributions and functional properties of hydrolysates from soy protein isolate (SPI) differing in degree of hydrolysis. The hydrolyzed SPI by pepsin showed 41.5% degree of hydrolysis after 5 min, and maximum hydrolysis was obtained after 2 hours. Actinidin hydrolyzed SPI 26.71% degree after 1 hour. On SDS-PAGE, native SPI showed 9 distinguishable bands on SDS-PAGE gel. Pepsin treated SPI showed one broad band in the lower part of gel. This band was shifted further to the bottom of the gel and became faint as hydrolysis time increased. While actinidin treated SPI showed different SDS-PAGE pattern from pepsin. However PAGE patterns were similar with pepsin and actinidin treated groups. With pepsin treatment, solubility of SPI distinctively increased around isoelectric point(pI). Emulsifying activity (EA) and emulsifying stability (ES) showed marked increase over pH range of $3.0{\sim}8.0$. 5 min modified group had most excellent foam expansion (FE). Foam stability (FS) was increased as pepsin treatment time increased at pI. With actinidin treatment, solubility was increased. 60 min modified SPI had the most effective EA at pH 4.5. However ES was not effected by actinidin treatment. 5 min modified group was most effect in FE. FS was higher at alkaline pH.

  • PDF

Optimization of Ingredients Formulation in tow Grades Surimi for Improvement of Gel Strength (저급 수리미의 젤 강도 증강을 위한 첨가물의 최적화)

  • CHOI Young-Joon;LEE Ho-Soo;CHO Young-Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.5
    • /
    • pp.556-562
    • /
    • 1999
  • The increasing price of surimi has affected the economical benefits of surimi based food industry, To maintain gel strength in low grade surimi, the optimum formulation adding functional proteins to low grade surimi is required. The objective of this study was to develop the optimum formulation of ingredients in making gels in low grade surimi on the addition of functional non-muscle proteins to low grade surmi by measuring rheological properties of the gels. The rheological qualities of the cooked gels made with A and RA grade surimi on the effects of adding five kinds of starches (potato, wheat, waxy maize, corn and modified corn) and four kinds of functional proteins (bovine plasma protein, dehydrated egg white, soy protein isolate and whey protein concentrate) to the gels were evaluated, The gel styengths at cooking with A and RA grade surimi were decreased with increasing the added starches. The kind of starches added affected little the gel strengths in Rh grade surimi, while potato and corn starches decreased at the least in gel strengths of the gel made with A grade surimi with increasing the concentration of starches. The bovine plasma protein (BPP) significantly increased the gel strength, especially in RA grade surimi, but BPP decreased the whiteness of the gel. Therefore, the optimum content of BPP was up to $2\%$ because of the whiteness of the gels in RA grade surimi, The optimum formulation for the gel with RA grade surimi to satisfy the gel strength of 1000$\times$g and $78\%$ moisture was $40.9\%$ surimi, $9.1\%$ dehydrated egg white (DEW) and $0.9\%$ starch, while that with A grade surimi under the same condition was $37.9\%$ surimi, $6.6\%$ DEW and $3,4\%$ starch.

  • PDF

Effect of Red Bean Protein and Microbial Transglutaminase on Gelling Properties of Myofibrillar Protein (적소두단백질(Red Bean Protein)과 Transglutaminase를 첨가한 돈육 근원섬유 단백질의 물성 증진 효과)

  • Jang, Ho-Sik;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.31 no.5
    • /
    • pp.782-790
    • /
    • 2011
  • The effects of soy protein isolate (SPI) and red bean protein isolate (RBPI) on gelling properties of pork myofibrillar protein (MP) in the presence of microbial transglutaminase (MTG) were studied at 0.45 M NaCl. MP paste was incubated with MTG (0.1%) at various levels (0.1, 0.3, 0.5, and 1%) of SPI and RBPI before incubating at $4^{\circ}C$ for 4 h. The rheological property results showed that MP gel shear stress increased with increasing RBPI concentration. Cooking yield (CY) of the MP gel increased with increasing RBPI and SPI, whereas gel strength (GS) was not affected by adding RBPI or SPI. Thus, effects of incubation time (0, 4, 8, 10, and 12 h) were measured at 0.1% SPI and RBPI. GS values of the MP gel at 10 and 12 h were similar and were higher than those of the others. CY values were highest when RBPI (0.1%) was added, regardless of incubation time. The protein patterns indicated that incubating the MP with MTG for 10 h resulted in protein crosslinking between MP and RBPI or SPI. Based on these results, RBPI and SPI could be used as an ingredient to increase textural properties and cooking yield of meat protein gel.

Development of a Multiplex Polymerase Chain Reaction Method for Simultaneous Detection of Genetically Modified Soy and Maize

  • Park, Kyoung-Sik;Kim, Mi-Gyeong;Leem, Dong-Gil;Yoon, Tae-Hyung;No, Ki-Mi;Hong, Jin;Kwon, Eun-Mi;Moon, Ae-Rie;Jeong, Ja-Young
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.3
    • /
    • pp.278-280
    • /
    • 2010
  • This study was aimed to develop a novel qualitative multiplex polymerase chain reaction (PCR) for simultaneous detection of genetically modified (GM) soy and maize within a single reaction. The specific primers designed to detect four respective GM events (A2704-12, MON88017, Bt11, and MON863) were included in the tetraplex PCR system. Each of PCR products for four GM events could be distinguished by agarose gel based on their different lengths. The specificity and reproducibility of this multiplex PCR were evaluated. This multiplex PCR consistently amplified only a fragment corresponding to a specific inserted gene in each of the four GM events and also amplified all four of the PCR products in the simulated GM mixture. These results indicate that this multiplex PCR method could be an effective qualitative detection method for screening GM soy and maize in a single reaction.

Functional Properties of Soy Protein Isolates Prepared from Defatted Soybean Meal (탈지대두박(脫脂大豆粕)에서 추출(抽出)한 분리대두단백(分離大豆蛋白)의 식품학적(食品學的) 성질(性質))

  • Byun, Si-Myung;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.123-130
    • /
    • 1977
  • A laboratory study was made to develop a simple and economic model method for the systematic determination of functional properties of 'Soy Protein Isolates (SPI)' prepared from defatted soybean meal. These are required to evaluate and to predict how SPI may behave in specific systems and such proteins can be used to simulate or replace conventional proteins. Data concerning the effects of pH, salt concentration, temperature, and protein concentration on the functional properties which include solubility, heat denaturation, gel forming capacity, emulsifying capacity, and foaming capacity are presented. The results are as follows: 1) The yield of SPI from defatted soybean meal increased to 83.9 % as the soybean meal was extracted with 0.02 N NaOH. 2) The suitable viscocity of a dope solution for spinning fiber was found to be 60 Poises by using syringe needle (0.3 mm) with 15 % SPI in 0.6 % NaOH. 3) Heat caused thickening and gelation in concentration of 8 % with a temperature threshold of $70^{\circ}C$. At $8{\sim}12\;%$ protein concentration, gel was formed within $10{\sim}30\;min$ at $70{\sim}100\;^{\circ}C$. It was, however, disrupted rapidly at $125\;^{\circ}C$ of overheat treatment. The gel was firm, resilient and self-supporting at protein concentration of 14 % and less susceptible to disruption of overheating. 4) The emulsifying capacity (EC) of SPI was correlated positively to the solubility of protein at ${\mu}=0$. At pH of the isoelectric point of SPI (pH 4.6), EC increased as concentration of sodium chloride increased. Using model system$(mixing\;speed:\;12,000\;r.p.m.,\;oil\;addition\;rate:\;0.9\;ml/sec,\;and\;temperature\;:\;20{\pm}1\;^{\circ}C)$, the maximum EC of SPI was found to be 47.2 ml of oil/100 mg protein, at the condition of pH 8.7 and ${\mu}=0.6$. The milk casein had greater EC than SPI at lower ionic strength while the EC of SPI was the same as milk casein at higher ionic strength. 5) The shaking test was used in determining the foam-ability of proteins. Progressively increasing SPI concentration up to 5 % indicated that the maximum protein concentration for foaming capacity was 2 %. Sucrose reduced foam expansion slightly but enhanced foam stability. The results of comparing milk casein and egg albumin were that foaming properties of SPI were the same as egg albumin, and better than milk casein, particularly in foam stability.

  • PDF

Isolation of Lipoxyeenase Isozymes from Soybean Seeds (대두 Lipoxygenase 이성효소의 분리)

  • Song, Young-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.3
    • /
    • pp.185-190
    • /
    • 1988
  • Soybean lipoxyeenase isozymes were isolated from acetone-defatted soybean seeds(Glycine max [L.] Merr. variety AmSoy) by ammonium sulfate fractionation, eel filtration, and ion exchange chromatoeraphy. The final preparation of lipoxygenase-1 and -2 obtained was 19- and 32-fold purified, respectively, to the crude extract. But a considerable loss of total enzyme activity occurred during purification. On 7% polyacrylamide gel electrophosis at pH 9.0, employing lipoxigenase specific staining technique, lipoxyeenase-1, -2, and -3 showed distinctive Rf values of 0.38, 0.29, and 0.33, respectively.

  • PDF