• Title, Summary, Keyword: stars: multiple

Search Result 109, Processing Time 0.052 seconds

DUST AROUND HERBIG AE/BE STARS

  • Suh, Kyung-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.13-21
    • /
    • 2011
  • We model dust around Herbig Ae/Be stars using a radiative transfer model for multiple isothermal circumstellar dust shells to reproduce the multiple broad peaks in their spectral energy distributions (SEDs). Using the opacity functions for various types of dust grains at different temperatures, we calculate the radiative transfer model SEDs for multiple dust shells. For eight sample stars, we compare the model results with the observed SEDs including the Infrared Space Observatory (ISO) and AKARI data. We present model parameters for the best fit model SEDs that would be helpful to understand the overall structure of dust envelopes around Herbig Ae/Be stars. We find that at least four separate dust components are required to reproduce the observed SEDs. For all the sample stars, two innermost dust components (a hot component of 1000-1500 K and a warm component of 300-600 K) with amorphous silicate and carbon grains are needed. Crystalline dust grains (corundum, forsterite, olivine, and water ice) are needed for some objects. Some crystalline dust grains exist in cold regions as well as in hot inner shells.

Dust Around T Tauri Stars

  • Suh, Kyung-Won;Kwon, Young-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.253-260
    • /
    • 2011
  • To reproduce the multiple broad peaks and the fine spectral features in the spectral energy distributions (SEDs) of T Tauri stars, we model dust around T Tauri stars using a radiative transfer model for multiple isothermal circumstellar dust shells. We calculate the radiative transfer model SEDs for multiple dust shells using the opacity functions for various dust grains at different temperatures. For six sample stars, we compare the model results with the observed SEDs including the Spitzer spectral data. We present model parameters for the best fit model SEDs that would be helpful to understand the overall structure of dust envelopes around classical T Tauri stars. We find that at least three separate dust components are required to reproduce the observed SEDs. For all the sample stars, an innermost hot (250-550 K) dust component of amorphous (silicate and carbon) and crystalline (corundum for all objects and forsterite for some objects) grains is needed. Crystalline forsterite grains can reproduce many fine spectral features of the sample stars. We find that crystalline forsterite grains exist in cold regions (80-100 K) as well as in hot inner shells.

MULTIPLE SUPERNOVA EXPLOSIONS INSIDE A WIND-BLOWN BUBBLE

  • Cho, Hyun-Jin;Kang, Hye-Sung
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.161-164
    • /
    • 2007
  • We calculate the evolution of multiple supernova (SN) explosions inside a pre-exiting bubble blown up by winds from massive stars, using one-dimensional hydrodynamic simulations including radiative cooling and thermal conduction effects. First, the development of the wind bubble driven by collective winds from multiple stars during the main sequence is calculated. Then multiple SN explosion is loaded at the center of the bubble and the evolution of the SN remnant is followed for $10^6$ years. We find the size and mass of the SN-driven shell depend on the structure of the pre-existing wind bubble as well as the total SN explosion energy. Most of the explosion energy is lost via radiative cooling, while about 10% remains as kinetic energy and less than 10% as thermal energy of the expanding bubble shell. Thus the photoionization and heating by diffuse radiation emitted by the shock heated gas is the most dominant form of SN feedback into the surrounding interstellar medium.

New insights on the origin of multiple stellar populations in globular clusters

  • Kim, Jaeyeon;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.46.1-46.1
    • /
    • 2018
  • In order to investigate the origin of multiple stellar populations in the halo and bulge of the Milky Way, we have constructed chemical evolution models for the low-mass proto-Galactic subsystems such as globular clusters. Unlike previous studies, we assume that supernova blast waves undergo blowout without expelling the pre-enriched gas, while relatively slow winds of massive stars, together with the winds and ejecta from low and intermediate mass asymptotic-giant-branch stars, are all locally retained in these less massive systems. We find that the observed Na-O anti-correlations in metal-poor GCs can be reproduced when multiple episodes of starbursts are allowed to continue in these subsystems. A specific form of star formation history with decreasing time intervals between the stellar generations, however, is required to obtain this result, which is in good agreement with the parameters obtained from our stellar evolution models for the horizontal-branch. The "mass budget problem" is also much alleviated by our models without ad-hoc assumptions on star formation efficiency and initial mass function. We also applied these models to investigate the origin of super helium-rich red clump stars in the metal-rich bulge as recently suggested by Lee et al. (2015). We find that chemical enrichments by the winds of massive stars can naturally reproduce the required helium enhancement (dY/dZ = 6) for the second-generation stars. Disruption of proto-globular clusters in a hierarchical merging paradigm would have provided helium enhanced stars to the bulge field.

  • PDF

OBSERVATIONAL EVIDENCE OF MULTIPLE STELLAR POPULATIONS IN STAR CLUSTERS

  • Piotto, Giampaolo
    • Publications of The Korean Astronomical Society
    • /
    • v.25 no.3
    • /
    • pp.91-99
    • /
    • 2010
  • An increasing number of observations have confirmed the presence of multiple stellar populations in Galactic globular clusters. Multiple populations evidence come from the complex chemical pattern of stars hosted in GCs and from the split or broadening of different evolutionary sequences in the color-magnitude diagrams. Multiple stellar populations have been identified in Galactic and Magellanic Cloud clusters, as well as in external galaxies. In this paper I will summarize the observational facts.

On the origin of Na-O anticorrelation in globular clusters

  • Kim, Jaeyeon;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.49.1-49.1
    • /
    • 2017
  • In order to investigate the origin of multiple stellar populations in the halo and bulge of the Milky Way, we have constructed chemical evolution models for the low-mass proto-Galactic subsystems such as globular clusters (GCs). Unlike previous studies, we assume that supernova blast waves undergo blowout without expelling the pre-enriched gas, while relatively slow winds of massive stars, together with the winds and ejecta from low and intermediate mass asymptotic giant branch stars, are all locally retained in these less massive systems. We first applied these models to investigate the origin of super-helium-rich red clump stars in the metal-rich bulge as recently suggested by Lee et al. (2015). We find that chemical enrichments by the winds of massive stars can naturally reproduce the required helium enhancement (dY/dZ = 6) for the second generation stars. Disruption of these "building blocks" in a hierarchical merging paradigm would have provided helium enhanced stars to the bulge field. Interestingly, we also find that the observed Na-O anticorrelation in metal-poor GCs can be reproduced, when multiple episodes of starbursts are allowed to continue in these subsystems. Specific star formation history with decreasing time intervals between the stellar generations, however, is required to obtain this result, as would be expected from the orbital evolution of these subsystems in a proto-Galaxy. The "mass budget problem" is also much alleviated by our models without ad-hoc assumptions on star formation efficiency and initial mass function.

  • PDF

Multiple Stellar Populations of Galactic Globular Clusters NGC 6656 and NGC 6723

  • Chun, Sang-Hyun;Sohn, Young-Jong;Lee, Young-Wook;Han, Sang-Il;Roh, Dong-Goo;Lee, Jae-Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.143.1-143.1
    • /
    • 2011
  • Deep Ca,b,y images obtained from the CTIO 4m Blaco telescope are used to investigate the multiple stellar populations of red giant branch (RGB) and sub-giant branch (SGB) in Galactic globular clusters NGC 6656 and NGC 6723. For NGC 6656, confirming the result of Lee et al. (2009), we find two discrete populations of the RGB stars of which mean color separation is about 0.2 mag in hk[=(Ca-b)-(b-y)] index. Furthermore, we also find the bimodel distribution of the SGB stars in (hk, y) color-magnitude diagram. A new finding is that the (hk, y) color-magnitude diagram of NGC 6723 shows two distinct RGB stars with different calcium abundances of which mean color separation is about 0.12 mag in hk index. This multiple stellar feature has not been observed in previous observation, suggesting that NGC 6723 may also be a possible relic of dwarf galaxies that merged into the Milky Way in the past. Thus our result adds further constraints to the merging scenario of the Galaxy formation. Unfortunately, the split of SGB stars in NGC 6723 is not obvious. We will present some statistical results to compare properties of two populations in two clusters.

  • PDF

CN AND CH BAND STRENGTHS OF BRIGHT GIANTS IN THE GLOBULAR CLUSTER M15

  • LEE SANG-GAK
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.3
    • /
    • pp.137-142
    • /
    • 2000
  • CN and CH band strengths for ten new bright giants in the globular cluster M15 have been measured from archival spectra obtained with the Multiple Mirror Telescope. Using published indices for other bright M15 giants, a CN-CH band strength anticorrelation is found for bright red giants. However, stars that do not follow the CN-CH anticorrelation are also found. They seem to show a positive correlation between the two indices. Among them, all the AGB and HB stars of the sample are included. Stars I-38 and X6, which are located near the RGB fiducial line in the CMD, have low measured CH(G) indices compared with other RGB stars. Stars IV-38, S4, and S1, which are all near the RGB tip, have strong measured CH(G) indices. Therefore, most of their evolutionary states are suspected to be different from those of a normal single RGB star.

  • PDF