• Title, Summary, Keyword: strong conjugate space

Search Result 2, Processing Time 0.024 seconds

DENSENESS OF TEST FUNCTIONS IN THE SPACE OF EXTENDED FOURIER HYPERFUNCTIONS

  • Kim, Kwang-Whoi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.4
    • /
    • pp.785-803
    • /
    • 2004
  • We research properties of analytic functions which are exponentially decreasing or increasing. Also we show that the space of test functions is dense in the space of extended Fourier hyper-functions, and that the Fourier transform of the space of extended Fourier hyperfunctions into itself is an isomorphism and Parseval's inequality holds.

SEQUENCES IN THE RANGE OF A VECTOR MEASURE

  • Song, Hi Ja
    • Korean Journal of Mathematics
    • /
    • v.15 no.1
    • /
    • pp.13-26
    • /
    • 2007
  • We prove that every strong null sequence in a Banach space X lies inside the range of a vector measure of bounded variation if and only if the condition $\mathcal{N}_1(X,{\ell}_1)={\Pi}_1(X,{\ell}_1)$ holds. We also prove that for $1{\leq}p<{\infty}$ every strong ${\ell}_p$ sequence in a Banach space X lies inside the range of an X-valued measure of bounded variation if and only if the identity operator of the dual Banach space $X^*$ is ($p^{\prime}$,1)-summing, where $p^{\prime}$ is the conjugate exponent of $p$. Finally we prove that a Banach space X has the property that any sequence lying in the range of an X-valued measure actually lies in the range of a vector measure of bounded variation if and only if the condition ${\Pi}_1(X,{\ell}_1)={\Pi}_2(X,{\ell}_1)$ holds.

  • PDF