• Title, Summary, Keyword: sun: magnetic field

Search Result 314, Processing Time 0.05 seconds

Magnetic Field Correction Method of Magnetometers in Small Satellites

  • Lee, Seon-Ho;Rhee, Seung-Wu;Ahn, Hyo-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.36-40
    • /
    • 2003
  • The considered satellite is supposed to operate in the earth-point mode and sun-point mode in accordance with the mission requirements. The magnetic field correction is based on the orbit geometry using a set of measured magnetic field data from the three-axis-magnetometer and its algorithm excludes the earth’s magnetic field model. Moreover, the usefulness of the proposed method is investigated throughout the simulation of KOMPSAT-1.

  • PDF

Distribution characteristics of a solar-surface magnetic field in the recent four solar cycles

  • Magara, Tetsuya;An, Junmo;Lee, Hwanhee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.47.1-47.1
    • /
    • 2018
  • Solar cycles are inherent to the Sun, which experiences temporal changes in its magnetic activity via the surface distribution of the solar magnetic field. This raises a fundamental question of how to derive the distribution characteristics of a solar-surface magnetic field that are responsible for individual solar cycles. We present a new approach to deriving as long-term and large-scale distribution characteristics of this quantity as was ever obtained; that is, we conducted a population ecological analysis of Wilcox Solar Observatory (WSO) Synoptic Charts which provide a more than 40-year time series of latitude-longitude maps of solar-surface magnetic fields. In this approach, solar-surface magnetic fields are assumed as hypothetical trees with magnetic polarities (magnetic trees) distributed on the Sun. Accordingly, we identified a peculiarity of cycle 23 with a longer period than an average period of 11 years; specifically we found that the negative surface magnetic field had much more clumped distributions than the positive surface magnetic field during the first one-third of this cycle, while the latter was dominant over the former. The Sun eventually spent more than one-third of cycle 23 recovering from these imbalances.

  • PDF

HALF-TURN ROTATION OF A POLARITY INVERSION LINE AND ASSOCIATED QUADRUPOLAR-LIKE STRUCTURE IN THE SUN

  • Magara, Tetsuya;An, Jun-Mo;Lee, Hwan-Hee;Kang, Ji-Hye
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.5
    • /
    • pp.143-150
    • /
    • 2011
  • This paper reports a characteristic motion of a polarity inversion line (PIL) formed at the solar surface, which is newly found by performing a three-dimensional magnetohydrodynamic simulation of flux emergence in the Sun. A magnetic flux tube composed of twisted field lines is assumed to emerge below the surface, forming a bipolar region with a PIL at the surface. A key finding is the successive half-turn rotation of the PIL, leading to the formation of a quadrupolar-like region at the surface and a magnetic configuration in the corona; this configuration is reminiscent of, but essentially different from the so-called inverse-polarity configuration of a filament magnetic field. We discuss a physical mechanism for producing the half-turn rotation of a PIL, which gives new insights into the magnetic structure formed via flux emergence. This presents a reasonable explanation of the configuration of a filament magnetic field suggested by observations.

Electromagnetic Chracteristics of Bi System Ceramic Superconductor (Bi계 세라믹재료의 전자기특성)

  • Lee, Sang-Heon
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1421-1423
    • /
    • 2003
  • The relationship between magnetic properties of BiPbSrCaCuo superconductor and externally applied magnetic field was studied to develop a magnetic field polarity sensor. The behavior was related to the magnetic flux trapped in the superconductor, which penetrates through the material by the external magnetic field. Some portion of the superconductor was changed to a normal state by the trapped magnetic flux. Electrical characteristics of the superconductor with trapped magnetic flux were extremely sensitive to the external magnetic field and showed different responses depending on the direction of the magnetic field.

  • PDF

AN INVERSION METHOD FOR DERIVING PHYSICAL PROPERTIES OF A SUBSURFACE MAGNETIC FIELD FROM SURFACE MAGNETIC FIELD EVOLUTION I. APPLICATION TO SIMULATED DATA

  • Magara, Tetsuya
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.6
    • /
    • pp.179-184
    • /
    • 2017
  • We present a new method for solving an inverse problem of flux emergence which transports subsurface magnetic flux from an inaccessible interior to the surface where magnetic structures may be observed to form, such as solar active regions. To make a quantitative evaluation of magnetic structures having various characteristics, we derive physical properties of subsurface magnetic field that characterize those structures formed through flux emergence. The derivation is performed by inversion from an evolutionary relation between two observables obtained at the surface, emerged magnetic flux and injected magnetic helicity, the former of which provides scale information while the latter represents the configuration of magnetic field.

Design of Alternating Magnetic Field Stimulator Using Duty Factor

  • Jang, Tae-Sun;Lee, Jin-Yong;Lee, Hyun-Sook;Kim, Sun-Wook;Hwang, Do-Guwn
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.42-45
    • /
    • 2012
  • We have developed an alternating magnetic field stimulation system consisting of a switched-mode power supply and a digital control circuit which modulates a duty ratio to maintain a magnetic field intensity of a few mT even while the frequency increases up to 4 kHz with a controllable coil temperature below $30^{\circ}C$ in air. This duty ratio modulation and water circulation are advantageous for cell culture under ac-magnetic field stimulation by preventing the incubator from exceeding a cell-viable temperature of $37^{\circ}C$. Although the temperature of the coil when subjected to a sinusoidal voltage rapidly increased, that of our system modulated by the duty factor did not change. This is a potentially valuable method to investigate the effects of intermediate frequency magnetic field stimulation on biological entities such as cells, tissues and organs.

The effect of field-line twist on the dynamic and electric current structures of emerging magnetic field on the Sun

  • An, Jun-Mo;Lee, Hwan-Hee;Kang, Ji-Hye;Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.102.1-102.1
    • /
    • 2011
  • In this study we use three-dimensional magnetohydrodynamic simulations to investigate how the dynamic state of emerging magnetic field is related to the twist of field lines. Emerging magnetic field forms a magnetic structure on the Sun where various kinds of activity such as solar flares, jets, and coronal mass ejections are observed. To understand the physical mechanism for producing such activity, we have to know the dynamic nature of this structure. Since flares are the manifestation of rapidly dissipating electric current in the corona, we also investigate the distribution of current density inside the structure and examine how it depends on the field-line twist. To demonstrate the dynamic structure of emerging magnetic field, we focus on the factors characterizing the geometric property and stratification of emerging magnetic field, such as the curvature of field line and the scale height of field strength. These two factors show that emerging field forms a two-part structure in which the central part is close to a force-free state while the outer marginal part is in a fairly dynamic state where magnetic pressure force is dominant. We discuss how the field-line twist affects the two-part structure and also explain a possible relation between electric current structure and sigmoid observed in a preflare phase.

  • PDF

Geosynchronous Magnetic Field Response to Solar Wind Dynamic Pressure

  • Park, Jong-Sun;Kim, Khan-Hyuk;Lee, Dong-Hun;Lee, En-Sang;Jin, Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.27-36
    • /
    • 2011
  • The present study examines the morning-afternoon asymmetry of the geosynchronous magnetic field strength on the dayside (magnetic local time [MLT] = 06:00~18:00) using observations by the Geostationary Operational Environmental Satellites (GOES) over a period of 9 years from February 1998 to January 2007. During geomagnetically quiet time (Kp < 3), we observed that a peak of the magnetic field strength is skewed toward the earlier local times (11:07~11:37 MLT) with respect to local noon and that the geosynchronous field strength is larger in the morning sector than in the afternoon sector. That is, there is the morning-afternoon asymmetry of the geosynchronous magnetic field strength. Using solar wind data, it is confirmed that the morning-afternoon asymmetry is not associated with the aberration effect due to the orbital motion of the Earth about the Sun. We found that the peak location of the magnetic field strength is shifted toward the earlier local times as the ratio of the magnetic field strength at MLT = 18 (B-dusk) to the magnetic field strength at MLT = 06 (B-dawn) is decreasing. It is also found that the dawn-dusk magnetic field median ratio, B-dusk/B-dawn, is decreasing as the solar wind dynamic pressure is increasing. The morning-afternoon asymmetry of the magnetic field strength appears in Tsyganenko geomagnetic field model (TS-04 model) when the partial ring current is included in TS-04 model. Unlike our observations, however, TS-04 model shows that the peak location of the magnetic field strength is shifted toward local noon as the solar wind dynamic pressure grows in magnitude. This may be due to that the symmetric magnetic field associated with the magnetopause current, strongly affected by the solar wind dynamic pressure, increases. However, the partial ring current is not affected as much as the magnetopause current by the solar wind dynamic pressure in TS-04 model. Thus, our observations suggest that the contribution of the partial ring current at geosynchronous orbit is much larger than that expected from TS-04 model as the solar wind dynamic pressure increases.

Correlation between Density and Magnetic Field in Compressible MHD Turbulence

  • Yoon, Hee-Sun;Cho, Jung-Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.86.1-86.1
    • /
    • 2011
  • Most astrophysical systems are turbulent and magnetized. Magnetic field plays an important role in the dynamics of ISM and influence all of properties of astrophysical system. Information of magnetic field is very important to understand properties of astrophysical systems. For example, one way to obtain information of magnetic field is to use Rotation Measure. Mean strength of the magnetic field along the line of sight can be estimated from RM/DM. (where RM is rotation measure, DM is dispersion measure) For the estimation of magnetic field strength using RM/DM, the correlation between density and magnetic field is very important. When there is no correlation between density and magnetic field the relation gives exact mean magnetic field strength. But, if the correlation is positive, it overestimates the magnetic field strength, while if the correlation is negative, it underestimate the strength. We calculate correlation between density and magnetic field in compressible MHD turbulence.

  • PDF