• Title, Summary, Keyword: switched reluctance motor

Search Result 657, Processing Time 0.035 seconds

Analysis of Linear Switched Reluctance Motor at High Speed (리니어 스위치드 릴럭턴스 전동기의 고속 특성 해석)

  • Jang, Seok-Myeong;Park, Ji-Hoon;Choi, Jang-Young;Sung, Ho-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.903-904
    • /
    • 2006
  • This paper deals with analysis of linear switched reluctance motor at high speed. First, we defined turn-on position at inductance profile. Second, in turn-on section, we analyzed characteristic of linear switched reluctance motor according to speed. Also, we used finite element method at analysis process.

  • PDF

Characteristic analysis of switched reluctance motor including permanent magnet (영구자석이 사용된 스위치드 릴럭턴스 전동기의 특성 해석)

  • Jang, Seok-Myeong;Park, Ji-Hoon;Choi, Jang-Young;Seong, Ho-Gyeong
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.119-121
    • /
    • 2006
  • This paper deals with characteristic analysis of switched reluctance motor including permanent magnet. First, we calculated flux density of switched reluctance motor according to position. Second, analyzed normal force and horizontal force from flux density of machine according to position. Also, analysis result compares with data that is derived through a finite element analysis (FEA), and proved validity.

  • PDF

Converter Coupled Finite Element Analysis of Single Phase Switched Reluctance Motor

  • Kim, Youn-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.216-220
    • /
    • 2007
  • This paper deals with the characteristic analysis of the single phase switched reluctance motor based on the converter coupled FE analysis. The converter comprises a rectifier, LC filter and switching power device. A computational technique for the converter coupled FE analysis is introduced and its validity is proven by the experiment.

Automated Inductance Measurement of a Switched Reluctance Motor Using Voltage Integration Method (전압적분법을 이용한 SRM의 자동화된 인덕턴스 측정)

  • Noh, Jeongmin;Kim, Jaehyuck
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1180-1185
    • /
    • 2015
  • This paper describes the accurate inductance measurement of a switched reluctance motor (SRM). Conventionally, the inductance of the SRM is measured using the equivalent circuit of a stator phase or time constant of exponential current transient. This paper presents an effective method to measure the SRM inductance accurately and rapidly using automated voltage integration. The proposed method is validated experimentally by comparison with the existing equivalent circuit method (ECM) and the FEA(finite element analysis) simulation.

Unity Power Factor Control of Sensorless Switched Reluctance Motor

  • Jeyakumar, A. Ebenezer;Shanmuganandan, K.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.1147-1152
    • /
    • 2004
  • Switched Reluctance Motors have an inexpensive, intrinsic simplicity and low cost that makes them well suited to home appliance and office applications. However the motor suffering with necessity of shaft position sensor, lead to non-linearity of operations. Further, the involvement of static converters deteriorates the operational power factor. Implementation of a sensorless algorithm, can remove the need of position sensors. Also, the drive includes a compact power factor control in the input stage by implementing Zero Current Switching Quasi-Resonant Boost Technology. This paper presented, aims at optimized low line current distortion, high power factor, low cost and a shaft position sensorless Switched Reluctance Motor drive.

  • PDF

Sensorless Drive Circuit of a Switched Reluctance Motor using the Variation of Phase Currents (상전류 변화를 이용한 Switched Reluctance Motor의 Sensorless 구동회로)

  • Lim, J.Y.;Cho, K.Y.;Shin, D.J.;Kim, C.H.;Kim, J.C.
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.315-317
    • /
    • 1995
  • A simple drive circuit without position sensors for a switched reluctance motor is presented. The turn on and turn off points are determined by detecting the rate of change of the active phase current. The drive circuit consists of a current sensing resistor, RC filter, comparator, OP Amp, and OR gates. It is verified through the experiments that the switched reluctance motor with the proposed sensorless drive circuit is well operated in wide speed ranges.

  • PDF

Design of Switched Reluctance Motor for Minimizing Torque Ripple (스위치드 릴럭턴스 전동기의 토오크 리플 저감 설계)

  • Kim, Youn-Hyun;Choi, Jae-Hack;Lee, Ju;Sung, Ha-Kyung;Im, Tae-Bin
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.654-656
    • /
    • 2002
  • The pole shape. turn-on angle. and turn-off angle are important design factors that largely influence Switched Reluctance Motor' s performance when designing a switched reluctance motor. These design factors must be considered simultaneously because an independent factor restricts the improvement of the switched reluctance motor' s performance. After performing the analysis using nonlinear same characteristic finite element method that contains a operating circuit, the influence upon the torque characteristics was analyzed by the pole shape and the angles. This paper presents the most suitable design value according to input conditions and various speeds. Especially.the most suitable angles were derived from the voltage equation. and an effective design range is showed from the angles.

  • PDF

Maximization average torque control of Switched Reluctance Motor using least square method (최소자승법을 이용한 Switched Reluctance Motor의 최대 평균토오크 제어)

  • 김춘삼;정연석
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.61-65
    • /
    • 2002
  • RM(Switched Reluctance Motor)'s Torque is generated by phase-current and inductance profile. A new analytical concept is proposed to determine the turn-off angle for maximization of the torque output. This paper describes a new method to maximization the average torque of a current control Switched Reluctance Motor. It is based on the simplified turn-off angle equation using least square method. Simulations carried out on a three-phase 6/4 pole SRM justify the algorithm is described. The suggested maximization average torque is verified by simulation in this paper.

Sensorless Control of a Single-Phase Switched Reluctance Motor Using Residual Flux

  • Yang, Hyong-Yeol;Shin, Duck-Shick;Lim, Young-Cheol
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.911-918
    • /
    • 2009
  • This paper presents a new sensorless control method for single-phase switched reluctance motors using induced electromotive force (EMF) due to the residual flux both on the stator and the rotor during phase commutation. The induced EMF falls to zero when the rotor pole moves away from the overlap with the stator pole. By detecting this instant, the speed and position of the rotor can be simply estimated. This method is very simple to implement and it is insensitive to variations in the system parameters as it does not require any stored magnetic data or offline inductance measurements but requires only measurements of the terminal voltage and a simple analog circuit. The proposed method is implemented on a 6/6 single-phase switched reluctance motor. However, it can also be implemented on a multiphase SRM regardless of the size, operation speed and switching mode of the motor hence making the proposed method viable to many applications. Simulation and experimental verification is provided to demonstrate the feasibility of the proposed method.

Flux Linkage Estimation in a Switched Reluctance Motor Using a Simple Reluctance Circuit

  • Lee, Cheewoo
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.57-64
    • /
    • 2013
  • Flux linkage of phase windings is a key parameter in determining the behavior of a switched reluctance motor (SRM) [1-8]. Therefore, the accurate prediction of flux linkage at aligned and unaligned rotor positions makes a significant contribution to the design of an SRM and its analytical approach is not straightforward due to nonlinear saturation in flux. Although several different approaches using a finite element analysis (FEA) or a curve-fitting tool have been employed to compute phase flux linkage [2-5], they are not suitable for a simple design procedure because the FEA necessitates a large amount of time in both modeling and solving with complexity for every motor design, and the curve-fitting requires the data of flux linkage from either an experimental test or an FEA simulation. In this paper, phase flux linkage at aligned and unaligned rotor positions is estimated by means of a reluctance network, and the proposed approach is analytically verified in terms of accuracy compared to FEA.