• Title, Summary, Keyword: switched reluctance motor

Search Result 657, Processing Time 0.042 seconds

A Position Sensorless Control of Switched Reluctance Motors Based on Phase Inductance Slope

  • Cai, Jun;Deng, Zhiquan
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.264-274
    • /
    • 2013
  • A new sensorless position estimation method for switched reluctance motor (SRM) drives is presented in this paper. This method uses the change of the slope of the phase inductance to detect the aligned position. Since the aligned positions for successive electrical cycle of each phase are apart by a fixed mechanical angle $45^{\circ}$ in the case of 12/8 SRM, the speed of the machine can be calculated to estimate the rotor position. Since no prior knowledge of motor parameters is required, the method is easy for implementation without adding any additional hardware or memory. In order to verify the validity of this technique, effects such as changes in the advanced angle and phase lacking faults are examined. In addition, an inductance threshold based sensorless starting scheme is also proposed. Experimental results demonstrate the validity of the proposed method.

Output Characteristics of Linear Switched Reluctance Motor with YBCO Tape Conductors

  • Hirayama, Tadashi;Asakawa, Shinichiro;Kawabata, Shuma
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.394-398
    • /
    • 2013
  • This paper presents output characteristics of a linear switched reluctance motor (LSRM) with excitation windings wound by using high-temperature superconducting (HTS) tapes. In a double-sided LSRM, Bi-2223 or YBCO tape conductors are used for the excitation windings. The characteristics of the LSRM are obtained by a finite element method analysis. We can obtain large thrust compared with a conventional LSRM by using YBCO tape conductors. Also, the effect of a configuration of the YBCO coil on the thrust is calculated. We discuss a suitable coil configuration for the average thrust upgrading.

An Adaptive Optimization Algorithm Based on Kriging Interpolation with Spherical Model and its Application to Optimal Design of Switched Reluctance Motor

  • Xia, Bin;Ren, Ziyan;Zhang, Yanli;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1544-1550
    • /
    • 2014
  • In this paper, an adaptive optimization strategy utilizing Kriging model and genetic algorithm is proposed for the optimal design of electromagnetic devices. The ordinary Kriging assisted by the spherical covariance model is used to construct surrogate models. In order to improve the computational efficiency, the adaptive uniform sampling strategy is applied to generate sampling points in design space. Through several iterations and gradual refinement process, the global optimal point can be found by genetic algorithm. The proposed algorithm is validated by application to the optimal design of a switched reluctance motor, where the stator pole face and shape of pole shoe attached to the lateral face of the rotor pole are optimized to reduce the torque ripple.

Eletromagnetic Field Analysis of SRM Due to Air Gap Eccentricity (Air Gap 편심에 따른 Switched Reluctance Motor의 전자기 가진력 해석)

  • 신현정;이동일;한승도
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.380.2-380
    • /
    • 2002
  • SRM(Switched Reluctance Motor) 내부의 Radial Force는 소음ㆍ진동의 주원인이 되는 가진력으로 작용하는 것으로 알려져 있다. 따라서 본 논문에서는 Radial Force의 주 요인인 Motor 내부의 Air Gap 편심에 따른 반경방향의 전자기 가진력을 전자장 수치해석을 통하여 해석하고 소음ㆍ진동에 미치는 영향을 분석하였다. Air Gap 편심량을 변화시켜 가면서 Stator, Rotor의 Local Force와 Gloval Force인 Torque Fluctuation을 해석하고 이를 실험 결과와 비교함으로서 해석결과의 타당성을 입증하였다.

  • PDF

Self-tuning control of turn-off angle for Switched reluctance motor drive (스위치드 리럭턴스 전동기에서 자기동조 방식에 의한 최적 턴오프각의 결정)

  • Moon, Jin-Young;Jang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.487-489
    • /
    • 1997
  • The control of the switched reluctance motor is usually on the inductance profiles as a function of position. In this paper, a control scheme to maximize the motor torque is proposed by determining optimal turn-off angle with a self-tuning control method.

  • PDF

Design of Sliding Mode Observer for Switched Reluctance Motor

  • Hwang, Young-Seong;Kim, Jin-Young;Choi, Jae-Dong;Kim, Kab-Dong;Seong, Se-Jin
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.434-437
    • /
    • 2001
  • Generally, a switched reluctance motor (SRM) drive requires a rotor position sensor for commutation and current control. However, this position sensor causes an increase for cost and size of motor drive. In this paper, a sliding mode observer is proposed for indirect position sensing in SRM drive. This estimated rotor position is used for the electric commutation of the machine phases. The paper includes a design approach and operating performance based on the proposed sliding mode observer.

  • PDF

Four-Quadrant Operation of a Single-Switch-based Switched Reluctance Drive (단일 스위치 기반의 4상한 운전 SRM 드라이브)

  • Ha, Keun-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.338-343
    • /
    • 2010
  • Low cost motor drives are being sought for high volume energy efficient home appliances. Key to the realization of such low cost motor drives is to reduce the power electronic converter in terms of its components, particularly the active devices, finding the motor with least complexity for manufacturing and a controller that could extract the desired performance from the machine and converter combination. These and other factors such as self-starting, speed control over a wide range and most of all the crowning aspect of a four quadrant operation with bare minimum number of controllable switch (or switches) remain as formidable challenges for low cost motor drive realization. In this paper, a four quadrant switched reluctance motor (SRM) drive with only one controllable switch is realized by using a two-phase machine. The theory and operation of the proposed four-quadrant SRM drive with the proposed control algorithm for its realization are described. The motor drive is modeled, simulated and analyzed to verify its feasibility for self-starting, speed control and for four quadrant operation and the simulation results are presented. Experimental results confirm the validity of the proposed control algorithm for four quadrant control of the SRM drive. The focus of the paper is mainly directed toward the control algorithm for realizing the four-quadrant operation of the two-phase SRM drive with a single controllable switch converter.

Performance Comparison of Conventional and Segmental Rotor Type Switched Reluctance Motor

  • Jeong, Kwang-Il;Xu, Zhenyao;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1138-1146
    • /
    • 2018
  • Performance comparisons of switched reluctance motor for cooling fan application are dealt in this paper. Conventional and novel segmental type motors with the same dimension are compared. The conventional 12/8 type is very popular and used widely. The structure of segmental rotor type motor is constructed from a series of discrete segments, and the stator is constructed from two types of stator poles: exciting and auxiliary poles. This type of motor has short flux path and no flux reversal in the stator. The auxiliary poles are not wound by the windings and only provide the flux return path. Compared with conventional SRM, the segmental structure increases electrical utilization of the machine and decreases core losses, which leads to higher efficiency. To verify the segmental structure, finite element method (FEM) is employed to get static and dynamic characteristics of both SRMs. Finally, the prototypes of conventional and segmental SRMs are tested for characteristics comparisons.

Position Detecting Modeling of Linear Switched Reluctance Motor(LSRM) for Railway Vehicles (철도차량용 선형전동기(LSRM) 위치검출 모델링)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1907-1912
    • /
    • 2016
  • In fact, in order to obtain good performances and low torque ripple, a high-resolution sensor is needed, which is costly and usually needs a special construction for the machine. So researchers are becoming aware of their cost and are exploring the possibility of cost reduction. Information of rotor position is necessary to drive Linear Switched Reluctance Motor(LSRM). Therefore, linear optical encoder is used to detect a mover position. Normally, since the price of encoder, which is used for linear motor is relatively higher than the one used for rotory motor and the cost of additional equipment increases with the length of motor. This is not always appropriate, considering economical efficiency in case of using the linear optical encoder. As a results, LSRM has a great part for the total cost. Therefore, in this paper, we propose LSRM position detecting modeling with reflective type photo-sensor. Additionally, we have investigated the possibility of the reduced position sensor for LSRM drives with advanced control technique. To certify the overall characteristics of the proposed method, a simulation using PSIM software has been carried out and the informative results are displayed.

Adaptive Variable Angle Control in Switched Reluctance Motor Drives for Electric Vehicle Applications

  • Cheng, He;Chen, Hao;Xu, Shaohui;Yang, Shunyao
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1512-1522
    • /
    • 2017
  • Switched reluctance motor (SRM) is suitable for electric vehicle (EV) applications with the advantages of simple structure, good overload capability, and inherent fault-tolerance performance. The SRM dynamic simulation model is built based on torque, voltage, and flux linkage equations. The EV model is built on the basis of the analysis of forces acting on a vehicle. The entire speed range of the SRM drive is then divided into constant torque and constant power areas. The command torque of the motor drive system is given according to the accelerator pedal coefficient and motor operation areas. A novel adaptive variable angle control is proposed to avoid the switching chattering between the current chopping control and angle position control modes in SRM drives for EV applications. Finally, simulation analysis and experimental results are conducted to verify the accuracy of the proposed simulation model and control strategy.