• Title, Summary, Keyword: switched reluctance motor

Search Result 657, Processing Time 0.051 seconds

Effect of Material Properties on Core Loss in Switched Reluctance Motor using Non-Oriented Electrical Steels

  • Kartigeyan, J.;Ramaswamy, M.
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.93-99
    • /
    • 2017
  • The effort attempts to investigate the influence of various non-oriented electrical steel sheets on the core loss of a switched reluctance motor (SRM). The core loss of the motor inherits a strong correlation with flux density and permeability of the material. The study involves the use of laminated 2.7 % high silicon steel suitable for the motor in view of its higher flux density and lower core loss. The accurate prediction of core loss leaves way to suggest measures for improving the performance of the SRM. The dynamic simulation measurements of a 1.5 kW, three-phase 12/8 SRM involve the finite element method (FEM) and use the data obtained experimentally from Epstein frame. The closeness of the simulated and hardware results obtained with laminations of M400-50A, DI MAX-M19 and DI MAX-M15 both for the stator and rotor, espouse a greater significance to the findings in terms of the core loss density and forge new dimensions for its use in the drive industry.

Control of SRM with Modified C-dump Converter in Cooling System of Automobiles (Modified C-dump 컨버터를 이용한 자동차 냉각시스템 SRM 제어)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1297-1302
    • /
    • 2017
  • Recently, SRMs are used in automobiles for power assistant steering, accessory motion control and traction drives. Especially in the motion control and traction drives, safety and efficiency are of paramount importance. The paper describes the essential elements faced in designing and constructing driving circuits for a switched reluctance motor for automobiles. An important factor in the selection of a motor and a drive for industrial application is the cost. The switched reluctance motor(SRM) is a simple, low-cost, and robust motor suitable for variable-speed as well as servo-type applications. With relatively simple converter and control requirements, the SRM is gaining an increasing attention in the drive industry. This paper presents a modified C-dump converter for Switched Reluctance Motor (SRM) machine application in the cooling system of automobiles. The experiments are performed to verify the capability of applicate control method on 6/4 salient type SRM.

Analysis of the Switched Reluctance motor Characteristics Considering Magnetic Nolinearity (자기적 비선형을 고려한 스위치드 리럭턴스 모터의 특성 해석)

  • 천동진
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.517-520
    • /
    • 2000
  • This paper presents models considering the magnetic nonlinear characteristics of 8/6 Switched Reluctance Motor. A $\lambda$-i equation with Fourier series parameters is shown to represent the relating to flux-linkage and current appropriately at any rotor position. And the energy conversion loop is described.

  • PDF

Performance of Passive Boost Switched Reluctance Converter for Single-phase Switched Reluctance Motor

  • Ahn, Jin-Woo;Lee, Dong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.505-512
    • /
    • 2011
  • A novel passive boost power converter forsingle-phaseswitched reluctance motor is presented. A simple passive circuit is proposed comprisingthree diodes and one capacitor. The passive circuitis added in the front-end of a conventional asymmetric converter to obtain high negative bias. Based on this passive network, the terminal voltage of the converter side is a general DC-link voltage level in parallel mode up to a double DC-link voltage level in series mode. Thus,it can suppress the negative torque generation from the tail current and improve the output power. The results of the comparative simulation and experiments forthe conventional and proposed converter verify the performance of the proposed converter.

Drive Circuit for Switched Reluctance Motor with Flyback Transformer (Flyback Transformer를 갖는 Switched Reluctance Motor의 구동회로)

  • Lim, J.Y.;Cho, K.Y.;Baik, I.C.;Shin, D.J.;Kim, J.C.
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.833-836
    • /
    • 1993
  • A flyback type power converter circuit for switched reluctance motor drives is presented. In this converter circuit, the energy extracted from an off going phase is stored in an additional capacitor. The energy stored is used to either be returned to the source frequently or energize the conducting phase during the conduction interval through the transformer. The additional switch to pass the energy stored in the capacitor to the source or the conducting phase is switched under a relatively low voltage condition. Its switching frequency is relatively high so that the size of the transformer can be reduced. The design guideline for the capacitor and the transformer is described. The effectiveness of the presented converter circuit is compared to other circuits through the analysis and experiment.

  • PDF

A Driving Algorithm for a Switched Reluctance type Contact-Free Linear Stage (Switched Reluctance 형 비접촉 선형 스테이지를 위한 구동 알고리즘)

  • Lee Sang-Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5
    • /
    • pp.85-92
    • /
    • 2006
  • Recently in the field of precision positioning device, the contact-free stages are gaining focuses with their outstanding performances by eliminating mechanical frictions. This paper presents the driving algorithm for contact-free linear stage based on switched reluctance principle. The proposed driving algorithm has a similar structure of that of switched reluctance motor but this study has its own originality in terms of reducing the normal farces and force ripple at the same time. The simulation and experiment are executed to verify the proposed algorithm.

Shape Optimization of a Switched Reluctance Motor Having 6/4 Pole Structure for the Reduction of Torque Ripple Using Response Surface Methodology (반응표면법을 이용한 6/4극 구조를 갖는 스위치드 릴럭턴스 모터의 토크 리플 저감을 위한 형상 최적설계)

  • Choi, Yong-Kwon;Yoon, Hee-Sung;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.608-616
    • /
    • 2006
  • Recently, a switched reluctance motor is widely used in various industries because it has many advantages such as a simple structure, robustness, less maintenance, high torque/weight ratio, and easy speed control over other types of motors. However, a switched reluctance motor inherently produces acoustic noise and vibration caused by torque ripple. Applications of these motors where silent operation is desirable have thus been limited. In this paper, a new stator pole face having a non-uniform air-gap and a pole shoe attached to the lateral face of the rotor pole are suggested in order to minimize torque ripple. The effects of each design parameter are validated using a time-stepping finite element method. The parameters are optimized by utilizing response surface method (RSM) combined with (1+1) evolution strategy. The result shows that the optimized shape gives higher average torque and drastically reduced torque ripple.

Rotor Design of Single Phase Switched Reluctance Motor for Advance Angle Control (앞선각 제어를 위한 단상 SRM 회전자설계)

  • Oh, Ju-Hwan;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.92-94
    • /
    • 2006
  • Single phase switched reluctance motor has a high speed capability, due to its very robust rotor, and requires only one electronic power switch in its control circuitry. The latter feature considerably reduces the cost of the drive system. But it involves starting problem and strongly torque ripple, which means that the motor is not suitable for application that require constant torque or speed. To solve torque ripple and region of these problem, this paper presents a single phase Switched Reluctance Motor model with a barrier rotor pole. Also it is simulated the designed prototype model by FEM for the prediction of characteristics.

  • PDF

Multi-Object Optimization of the Switched Reluctance Motor

  • Choi, Jae-Hak;Kim, Sol;Kim, Yong-Su;Lee, Sang-Don;Lee, Ju
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.184-189
    • /
    • 2004
  • In this paper, multi-object optimization based on a progressive quadratic response surface method (PQRSM) and a time stepping finite element method (FEM) is proposed. The new PQRSM and FEM are able to decide optimal geometric and electric variables of the switched reluctance motor (SRM) with two objective functions: torque ripple minimization and average torque maximization. The result of the optimum design for SRM demonstrates improved performance of the motor and enhanced relationship between torque ripple and average torque.

Design and Analysis of Double Stator Type Bearingless Switched Reluctance Motor (이중고정자구조를 가지는 베어링리스 스위치드 릴럭턴스 전동기의 설계와 해석)

  • Peng, Wei;Lee, Dong-Hee;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.746-752
    • /
    • 2011
  • In this paper, a novel bearingless switched reluctance motor (BLSRM) with double stator is proposed. This motor has two stators. Torque stator is outside, which mainly produces rotational torque. Radial force stator is inside, which mainly generates radial force to suspend the rotor. A novel structure and operating principle are presented. And characteristics of the proposed structure such as magnetic flux distribution, inductance, torque and radial force are analyzed through finite element method. From the analysis, the proposed BLSRM has linear characteristic of radial force and independence from torque current.