• Title, Summary, Keyword: switched reluctance motor

Search Result 657, Processing Time 0.047 seconds

A study on the new converter for the switched reluctance motor drive (스위치드 리럭턴스 전동기 구동을 위한 새로운 컨버터에 관한 연구)

  • Kang, Wook;Won, Chung-Yuen
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.217-226
    • /
    • 1996
  • Switched reluctance motor (SRM) drives appear today as viable alternatives to induction and brushless motor drives in a wide range of application such as machine tools, fans, and pumps. This paper deals with a new converter topology which can be used in order converter. The split source type converter consists of minimum switching devices to be used in switched reluctance motor (SRM) drive. In this proposed converter two switches and six diodes are added to split source type converter. The proposed converter has performance minimizes the negative torque, Which puts the phase current off by double impressed voltages. The major advangtage of this converter is the increase of the average output power while improving better converter efficiency in heavy load and high speed than other topologies. The proposed converter system has been implemented using 80C196KB microcontroller and experiments were carried out ot verify the simulation results.

  • PDF

Switched Reluctance Motors for Electric Drive of Overland Belt Conveyor

  • Ptakh, Gennady K.;Evsin, Nicholas F.;Zvezdunov, D. Alex;Rozhkov, Dmitry V.;Yakovenko, Alexander E.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.409-414
    • /
    • 2014
  • The parameters and operating characteristics of the switched reluctance motor (SRM) for the electric drive of the overland belt conveyor CLM-4500 have been presented. The motor power capacity has been equal to 1250 kW, the motor speed - 1000 min-1. SRM power supply has been provided by a three-phase voltage inverter and a 12-pulse rectifier circuit. The group electric drive has been installed on sections number 2 and 3, 3770 m and 3375 m length, respectively, on the areas of "Berezovsky Strip" JSC, a member of the Siberian Coal Energy Company.

Design of In-Wheel Type Switched Reluctance Motor for Electric Vehicle Traction and Wireless Charging (전기자동차 트랙션 및 무선 충전용 인휠타입 스위치드 릴럭턴스 전동기 설계)

  • Lukman, Grace Firsta;Son, Dong-Ho;Lee, Dong-Hee;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1866-1872
    • /
    • 2017
  • This paper presents the design of in-wheel type Switched Reluctance Motor (SRM) which can be used as both traction motor and power pickup device in a wireless charging system of electric vehicles. The SRM acts as a traction drive in driving mode and a power receiver in charging mode to avoid any additional weights. Double stator axial field SRM is used due to its structure that can be mounted inside the wheel. The charging circuit is integrated with the asymmetric converter and phase windings of SRM, reducing the cost and size of the system. Magnetic resonance is implemented to increase the efficiency. Simulations done in Maxwell and Simplorer verify the effectiveness of the proposed system.

Rotor Design of Single Phase Switched Reluctance Motor for Advance Angle Control (앞선각 제어를 위한 단상 SRM 회전자설계)

  • Oh, Ju-Hwan;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.92-94
    • /
    • 2006
  • Single phase switched reluctance motor has a high speed capability, due to its very robust rotor, and requires only one electronic power switch in its control circuitry. The latter feature considerably reduces the cost of the drive system. But it involves starting problem and strongly torque ripple, which means that the motor is not suitable for application that require constant torque or speed. To solve torque ripple and region of these problem, this paper presents a single phase Switched Reluctance Motor model with a barrier rotor pole. Also it is simulated the designed prototype model by FEM for the prediction of characteristics.

  • PDF

Design and Analysis of Double Stator Type Bearingless Switched Reluctance Motor (이중고정자구조를 가지는 베어링리스 스위치드 릴럭턴스 전동기의 설계와 해석)

  • Peng, Wei;Lee, Dong-Hee;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.746-752
    • /
    • 2011
  • In this paper, a novel bearingless switched reluctance motor (BLSRM) with double stator is proposed. This motor has two stators. Torque stator is outside, which mainly produces rotational torque. Radial force stator is inside, which mainly generates radial force to suspend the rotor. A novel structure and operating principle are presented. And characteristics of the proposed structure such as magnetic flux distribution, inductance, torque and radial force are analyzed through finite element method. From the analysis, the proposed BLSRM has linear characteristic of radial force and independence from torque current.

Sensorless Control for Switched Reluctance Motor by Comparing Two Consecutive Switch-on times (인접한 스위치 온 타임 비교를 통한 SRM의 센서리스 제어)

  • Yang, Hyong-Yeol;Kim, Jae-Hyuck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.185-191
    • /
    • 2010
  • This paper describes a new position sensorless control for the switched reluctance motor (SRM) by monitoring the rate of change of current with respect to the inductance variation. Two consecutive switch-on times in hysteresis current control are compared to calculate the rate of change of current and hence to estimate the rotor position and speed. The proposed sensorless control algorithm is simple to implement as it does not depend on extensive computation or additional hardware. Simulation and experimental results are presented to demonstrate the feasibility of the proposed sensorless control method.

Multi-Object Optimization of the Switched Reluctance Motor

  • Choi, Jae-Hak;Kim, Sol;Kim, Yong-Su;Lee, Sang-Don;Lee, Ju
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.184-189
    • /
    • 2004
  • In this paper, multi-object optimization based on a progressive quadratic response surface method (PQRSM) and a time stepping finite element method (FEM) is proposed. The new PQRSM and FEM are able to decide optimal geometric and electric variables of the switched reluctance motor (SRM) with two objective functions: torque ripple minimization and average torque maximization. The result of the optimum design for SRM demonstrates improved performance of the motor and enhanced relationship between torque ripple and average torque.

Sensorless control of Switched Reluctance Motor for Electric AC Compressors of Electrical Vehicles (전기자동차 용 전동식 컴프레서를 위한 스위치드 릴럭턴스 모터의 센서리스 제어)

  • Jeon, Yong-Hee;Kim, Jaehyuck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.37-42
    • /
    • 2014
  • This paper discusses study of sensorless control of a variable speed switched reluctance motor (SRM) for electric AC compressors on electrical vehicles. A typical SRM drive requires a position sensor such as an encoder or hall sensor to measure the angular rotor position. However, harsh environment in electrical AC compressors for electric vehicles makes it difficult to use the position sensor in their motor drive system. Therefore, a sensorless control scheme for electric compressor motors utilizing magnetic characteristics of SRM with respect to position angle and phase current is proposed. The overall variable speed SRM drive with position sensorless control scheme has been modeled using Matlab/Simulink software and closed loop current control simulation is presented to validate the proposed sensorless drive control.

High Performance PI Current Controller for a Switched Reluctance Motor

  • Ashoornejad, A.;Rashidi, A.;Saghaeian-nejad, S.M.;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.367-373
    • /
    • 2014
  • The most common current controller for the Switched Reluctance Motor (SRM) is the hysteresis controller. This method, however, suffers from such drawbacks as variable switching frequency, consequent audible noise and high current ripple. These disadvantages make this controlling method undesirable for many applications. The alternative solution is the PI controller. Since the fixed gain PI current controller can only be optimized for one operating point, and on the other hand, SR motor is highly nonlinear, PI controller gain should be adjusted according to incremental inductance. This paper presents a novel method for PI current controller gain adaptation which is simple and yields a good performance. The proposed controller has been implemented on a test bench using a eZdsp F28335 board. The performance of the current controller has been investigated in both simulation and experimental tests using a four-phase 8/6 4KW SRM drive system.

Design and Analysis of a Segmental Rotor Type 12/8 Switched Reluctance Motor

  • Zhang, Hongtao;Lee, Dong-Hee;Lee, Chee-Woo;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.866-873
    • /
    • 2014
  • In this paper, a novel 12/8 segmental rotor type switched reluctance motor (SRM) is proposed for cooling fan applications. Unlike conventional structures, the rotor of the proposed structure is constructed from a series of discrete segments, and the stator is constructed from two types of stator poles: exciting and auxiliary poles. Moreover, in this structure, short flux paths are taken and no flux reversion exists in the stator. While the auxiliary poles are not wound by the windings, which only provide the flux return path. When compared with the conventional SRM, the proposed structure increases the electrical utilization of the machine and decreases the core losses, which may lead to a higher efficiency. To verify the proposed structure, the finite element method (FEM) and Matlab-Simulink are employed to get the static and dynamic characteristics of the proposed SRM. Finally, a prototype of the proposed motor was tested for characteristic comparisons.