• Title, Summary, Keyword: synchronous generator

Search Result 540, Processing Time 0.039 seconds

A High Performance Exciter Control System of Synchronous Generator using Direct Instantaneous Voltage Control Method (직접 순시전압 제어기법에 의한 동기발전기의 고성능 여자 제어시스템)

  • Lee, Dong-Hee;Liang, Jianing;Lee, Sang-Hoon;Ahn, Jin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.68-74
    • /
    • 2007
  • This paper presents a simple, robust excitation control system for synchronous generator using direct instantaneous voltage control(DIVC) method DIVC method can operate as maximum dynamics of power conversion system without any control gains such as PID controller. And the transient overshoot of generator voltage can be suppressed with a simple time constant. The proposed control scheme is verified by the computer simulation and experimental results in prototype generation system.

Implementation and Control of AC-DC-AC Power Converter in a Grid-Connected Variable Speed Wind Turbine System with Synchronous Generator (동기기를 사용한 계통연계형 가변속 풍력발전 시스템의 AC-DC-AC 컨버터 구현 및 제어)

  • Song Seung-Ho;Kim Sung-Ju;Hahm Nyon-Kun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.609-615
    • /
    • 2005
  • A 30kW electrical power conversion system is developed for a variable speed wind turbine. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and the frequency of the generator output vary according to the wind speed, a 6-bridge diode rectifier and a PWM boost chopper is utilized as an ac-dc converter maintaining the constant dc-link voltage with only single switch control. An input current control algorithm for maximum power generation during the variable speed operation is proposed without any usage of speed sensor. Grid connection type PWM inverter converts dc input power to ac output currents into the grid. The active power to the grid is controlled by q-axis current and the reactive power is controlled by d-axis current with appropriate decoupling. The phase angle of utility voltage is detected using software PLL(Phased Locked Loop) in d-q synchronous reference frame. Experimental results from the test of 30kW prototype wind turbine system show that the generator power can be controlled effectively during the variable speed operation without any speed sensor.

Fault diagnosis system of the short circuit conditions in windings for synchronous generator (동기발전기 권선단락사고 고장진단 시스템)

  • Jang, Nakwon;Lee, SungHwan
    • Journal of the Korean Society of Marine Engineering
    • /
    • v.37 no.5
    • /
    • pp.520-526
    • /
    • 2013
  • As the increasing of capacity and technology of power facilities, rotating machines are getting higher at capacity and voltage scale. Thus the monitoring and diagnosis of generators for fault detection has attracted intensive interest. In this paper, we developed fault diagnosis system for monitoring the fault operations in bad power systems. In order to verify the performance of this fault diagnosis system, we made the small scaled testing system which has the same winding structure of the real synchronous generator. The magnetic flux patterns in air-gap of a small-scale generator under various fault states as well as a normal state are tested by hall sensors and the fault detection system.

A Study on Out-of-Step Relay Operation due to Delayed Fault Clearing in Transmission Line (송전선로 고장제거 지연에 따른 동기 탈조 계전기 동작 검토)

  • Park, Ji-Kyung;Kim, Kwang-Hyun;Kim, Chul-Hwan;Lyu, Young-Sik;Yang, Jeong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1466-1473
    • /
    • 2017
  • Generally, electrical torque in synchronous generator is balanced with the rotor mechanical torque under steady-state condition. Thus, the synchronous generator rotor rotates at constant speed. However, under fault condition, the electrical torque output is suddenly decreased and the sum of both torques does not remain constant. If the mechanical torque is not decreased at the same time, the generator rotor would accelerate. Therefore, this accelerating generator rotates at different speeds with respect to other generators in the power system. This phenomena is called as Out-of-Step (OOS). In this paper, we presented a certain two-step type quadrilateral OOS relay setting, which is applicable in actual field, and examined the validity of its setting value with OOS simulation conditions due to delayed fault clearing in transmission line. In order to conduct the study of OOS relay characteristics, we checked the impedance locus and generator output characteristics under the various delayed fault clearing conditions. Moreover, we proposed a countermeasure for avoiding the misoperation of OOS relay during the stable swing by modifying the setting values.

AVR controller design of synchronous generator (동기발전기의 자동전압조정장치 제어기 설계)

  • Lee, J.M.;Kim, M.H.;Lee, J.H.;Park, Y.H.;Lim, I.H.;Goo, K.M.
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.167-170
    • /
    • 1993
  • This paper deals with AVR(Automatic Voltage Regulator) control1or design of synchronous generator adapting AC indirect excitation system. The simulation results are presented in frequency and tine domain for two plants(A and B). Try and error method for compensator design is used.

  • PDF

Two-Degree-of Freedom Control of the Synchronous Generator Using $H_{\infty}$ Control Methods ($H_{\infty}$ 제어이론을 사용한 동기 발전기의 2-자유도 제어)

  • Kim, Young-Su;Kim, Tae-Joon;Lee, Byung-Ha
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.754-756
    • /
    • 1998
  • In this paper the control methods for the synchronous generator is designed based on the two-degree-of-freedom (TDOF) control methods which can safisty the command following property and Robust control property at the same time. The power systems is reduced to one machine infinite-bus system. Robust stability of the proposed power system stabilizer is checked through the simulation considering the circumstance which can happen in real situation.

  • PDF

Maximum Power Point Tracker for Permanent Magnet Synchronous Generator Based Wind Energy System using Fuzzy Logic Algorithm

  • Putri, Adinda Ihsani;Sastrowijoyo, Fajar;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.93-94
    • /
    • 2011
  • The use of boost chopper in Permanent Magnet Synchronous Generator (PMSG) aims to capture maximum power at any wind speed condition. It is reached by adjusting the duty cycle of boost chopper. In this paper, fuzzy logic algorithm is used to find the duty cycle value which yields the maximum power output. This control scheme is verified by PSIM simulation. Another MPPT method is also simulated as a comparison.

  • PDF

Design Parameter Deduction for Slotless Permanent Magnet Synchronous Motor/Generator (슬롯리스 영구자석 동기 전동/발전기를 위한 설계변수 도출)

  • Jang, Seok-Myeong;Lee, Un-Ho;You, Dae-Joon;Ko, Kyoung-Jin;Lee, Jung-Pill
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.53-55
    • /
    • 2008
  • In high speed applications, the slotless permanent magnet(PM) motors appear an attractive solution, being almost insensitive to magneto-motive force harmonics and to pulse width modulation(PWM) current ripple and exhibiting lower stator iron losses and rotor losses (significant with square wave current control). So, this paper deals with methods for design of permanent magnet synchronous motor/generator.

  • PDF

Characteristic analysis and experiment of axial flux type permanent magnet synchronous generator for small wind turbine (소형풍력발전 시스템용 축방향 자속형 영구자석 동기발전기의 특성해석과 실험)

  • You, Yong-Min;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.704_705
    • /
    • 2009
  • This paper presents a axial flux permanent magnet synchronous generator(AFPMSG), which is suitable for both vertical-axis and horizontal-axis wind turbine generation system. The design and construction features of the AFPMSG are reviewed. The characteristic analysis is performed such as cogging torque and e.m.f waveform, with the aid of a 3D finite element method. The experimental results confirm the characteristic analysis developed.

  • PDF

Characteristics of parallel operation of synchronous generator in a stand-alone grid system (독립형 계통시스템에서 동기발전기 병렬운전 특성)

  • Ko, Hyun-Seok;Kang, Seong-Hyun;Kim, Sun-pil;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.141-142
    • /
    • 2013
  • 화석 에너지의 고갈과 환경문제의 대두로 인하여 에너지 효율이 중요시 되고 있다. 이로 인하여 효율적인 비상발전 운용 시스템이 요구되고 있다. 하나의 발전기로 구동할 경우 용량에 비해 적은 부하가 발생할 경우 효율이 떨어지는 문제가 발생한다. 때문에 산업용 비상발전기의 경우 발전기의 효율성 문제로 하나의 발전기로 구동하는 방식이 아닌 다중 발전기를 병렬로 구동하는 방식을 선택한다. 본 논문에서는 55kAV급 동기발전기(synchronous generator) 2기를 이용하여, 발전기의 병렬운전 특성을 파악하려 한다.

  • PDF