• Title, Summary, Keyword: transitive

Search Result 152, Processing Time 0.023 seconds

FUZZY TRANSITIVE FILTERS OF BE-ALGEBRAS

  • Rao, M. Sambasiva
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.213-226
    • /
    • 2017
  • The concept of fuzzy transitive filters is introduced in BE-algebras. Some sufficient conditions are established for every fuzzy filter of a BE-algebra to become a fuzzy transitive filter. Some properties of fuzzy transitive filters are studied with respect to fuzzy relations and cartesian products.

CANONICAL FORM OF AN TRANSITIVE INTUITIONISTIC FUZZY MATRICES

  • LEE, HONG-YOUL;JEONG, NAE-GYEONG
    • Honam Mathematical Journal
    • /
    • v.27 no.4
    • /
    • pp.543-550
    • /
    • 2005
  • Some properties of a transitive fuzzy matrix are examined and the canonical form of the transitive fuzzy matrix is given using the properties. As a special case an open problem concerning idempotent matrices is solved. Thus we have the same result in a intuitionistic fuzzy matrix theory. In our results a nilpotent intuitionistic matrix and a symmetric intuitionistic matrix play an important role. We decompose a transitive intuitionistic fuzzy matrix into sum of a nilpotent intuitionistic matrix and a symmetric intuitionistic matrix. Then we obtain a canonical form of the transitive intuitionistic fuzzy matrix.

  • PDF

NORMAL EDGE-TRANSITIVE CIRCULANT GRAPHS

  • Sim, Hyo-Seob;Kim, Young-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.317-324
    • /
    • 2001
  • A Cayley graph of a finite group G is called normal edge-transitive if its automorphism group has a subgroup which both normalized G and acts transitively on edges. In this paper, we consider Cayley graphs of finite cyclic groups, namely, finite circulant graphs. We characterize the normal edge-transitive circulant graphs and determine the normal edge-transitive circulant graphs of prime power order in terms of lexicographic products.

  • PDF

TRANSITIVE AND ABSORBENT FILTERS OF LATTICE IMPLICATION ALGEBRAS

  • Rao, M. Sambasiva
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.323-330
    • /
    • 2014
  • The notion of transitive filters is introduced in lattice implication algebras. A necessary and sufficient condition is derived for every filter to become a transitive filter. Some sufficient conditions are also derived for a filter to become a transitive filter. The concept of absorbent filters is introduced and their properties are studied. A set of equivalent conditions is obtained for a filter to become an absorbent filter.

CLASSIFICATION OF REFLEXIBLE EDGE-TRANSITIVE EMBEDDINGS OF $K_{m,n}$ FOR ODD m, n

  • Kwon, Young-Soo
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.533-541
    • /
    • 2009
  • In this paper, we classify reflexible edge-transitive embeddings of complete bipartite graphs $K_{m,n}$ for any odd positive integers m and n. As a result, for any odd m, n, it will be shown that there exists only one reflexible edge-transitive embedding of $K_{m,n}$ up to isomorphism.

  • PDF

TRANSITIVE SETS WITH DOMINATED SPLITTING

  • Lee, Manseob
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.1
    • /
    • pp.65-71
    • /
    • 2010
  • Let $\Lambda$ be a transitive set for f. In this paper, we show that if a f-invariant set $\Lambda$ has the $C^{1}$-stably shadowing property, then $\Lambda$ admits a dominated splitting.

TOTALLY CHAIN-TRANSITIVE ATTRACTORS OF GENERIC HOMEOMORPHISMS ARE PERSISTENT

  • GHANE FATEMEH HELEN;FAKHARI ABBAS
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.631-638
    • /
    • 2005
  • we prove that, given any compact metric space X, there exists a residual subset R of H(X), the space of all homeomorphisms on X, such that if $\in$ R has a totally chain-transitive attractor A, then any g sufficiently close to f has a totally chain transitive attractor A$\_{g}$ which is convergent to A in the Hausdorff topology.