• Title, Summary, Keyword: trigonometric poly-nomial

Search Result 1, Processing Time 0.037 seconds

ON HYPONORMALITY OF TOEPLITZ OPERATORS WITH POLYNOMIAL AND SYMMETRIC TYPE SYMBOLS

  • Hazarika, Munmun;Phukon, Ambeswar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.617-625
    • /
    • 2011
  • In [6], it was shown that hyponormality for Toeplitz operators with polynomial symbols can be reduced to classical Schur's algorithm in function theory. In [6], Zhu has also given the explicit values of the Schur's functions ${\Phi}_0$, ${\Phi}_1$ and ${\Phi}_2$. Here we explicitly evaluate the Schur's function ${\Phi}_3$. Using this value we find necessary and sufficient conditions under which the Toeplitz operator $T_{\varphi}$ is hyponormal, where ${\varphi}$ is a trigonometric polynomial given by ${\varphi}(z)$ = ${\sum}^N_{n=-N}a_nz_n(N{\geq}4)$ and satisfies the condition $\bar{a}_N\(\array{a_{-1}\\a_{-2}\\a_{-4}\\{\vdots}\\a_{-N}}\)=a_{-N}\;\(\array{\bar{a}_1\\\bar{a}_2\\\bar{a}_4\\{\vdots}\\\bar{a}_N}\)$. Finally we illustrate the easy applicability of the derived results with a few examples.