• Title, Summary, Keyword: waxy rice paste

Search Result 20, Processing Time 0.036 seconds

Effect of Ingredients on In vitro Digestibility and Physical Properties of Ginseng-Chicken Meat Porridge (재료에 따른 인삼닭죽의 in vitro 단백질 및 전분 분해율과 물리적 특성)

  • Shin, Eun-Soo;Ryu, Hong-Soo
    • Korean journal of food and cookery science
    • /
    • v.24 no.3
    • /
    • pp.273-281
    • /
    • 2008
  • To determine the nutritional quality and physical properties of ginseng-chicken meat porridge, 10 kinds of ginsengchicken meat porridge samples containing waxy and/or non-waxy rice were analyzed for in vitro protein digestibility and their degree of starch hydrolysis. Viscosity and spreadness were determined for the gelatinized pastes of the porridge samples. Microphotographs of the starch granules and pastes were studied to confirm structural changes in the rice starch during cooking. The starch paste from non-waxy rice porridge had higher viscosity than the starch paste from the waxy rice porridge; however, in the case of the ginseng-chicken meat porridge, the difference in viscosity was negligible. Microphotograph comparisions between the waxy rice porridge and non-waxy rice porridge indicated apparent differences in the shapes of their starch granules and gels. The granule surface of the non-waxy rice was very rough while that of the waxy rice was very smooth; this difference would lead to organoleptical discrepancy. The added ginseng increased the protein digestibility of the chicken meat; however, the protein digestibility of the ginseng-chicken meat porridge was lower than that of the chicken meat or rice porridge due to inhibited protein digestion by the gelatinized starch. Finally, the rice porridge had increased starch hydrolysis with additions of chicken meat and vegetables.

Changes in Sugar Level, Acidity, Viscosity, and Color of Lactic Acid Bacteria- Fermented Waxy Rice Paste Containing Colored Agro-food Products (유색 식물을 이용한 약초부각용 발효찹쌀풀의 당, 산도, 점도 및 색도 변화)

  • Ko, Young-Ran;Shon, Mi-Yae;Chung, Kyung-Sook;Wang, Su-Bin;Kang, Seong-Koo;Park, Seok-Kyu
    • Korean Journal of Food Preservation
    • /
    • v.16 no.2
    • /
    • pp.266-275
    • /
    • 2009
  • To develop new high-quality Yakchobugak, features of Lactococcus lactis-fermented waxy rice paste after addition of some colored powdered agro-food products were investigated. Total and reducing sugars of waxy rice paste fermented by lactic acid bacteria were higher than those of control raw waxy rice paste. Total acidity gradually increased as powder concentration rose, being 1.02-1.56% and 0.96-1.87% in samples fermented with Cucurbita maxima and Capsicum annuum powders, respectively; these values were 3-4 times those in rice fermented with other powders. Fermented waxy rice paste viscosities were lower than those of non-fermented samples. The viscosities of samples fermented with Curcuma longa and Opuntia ficus powders were in the range $100-160{\times}10^4$ centipoise($mPa{\cdot}s$), and those of pastes fermented with Robus coreanus and Camellia sinensis extracts were under $40{\times}10^4mPa{\cdot}s$. Hunter color lightness(L) values decreased and yellowness(b) values rose after fermentation. Waxy rice paste fermented with Robus coreanus showed uniform particle size distribution, and many pores, by scanning electron micrography.

Changes in Quality Properties of Fermented Waxy Rice Paste of Yakchobugak as Affected by Lactic Acid Bacteria and Waxy Rice Powder (유산균 종류와 찹쌀가루의 호화온도 및 발효시간에 따른 약초부각 발효풀의 품질특성 변화)

  • Ko, Young-Ran;Shon, Mi-Yae;Kim, Yun-Geun;Chung, Kyung-Sook;Wang, Su-Bin;Park, Seok-Kyu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.2
    • /
    • pp.201-210
    • /
    • 2009
  • This study was undertaken to investigate the quality properties of yakchobugak as affected by lactic acid bacteria and waxy rice paste for improving palatability of yakchobugak of Agastache rugosa. Total sugar contents of lactic acid bacteria-fermenting waxy rice paste gelatinized at $90^{\circ}C$ were higher than that of $70^{\circ}C$. Reducing sugar contents were $2{\sim}5$ times higher in $70^{\circ}C$ waxy rice paste than in $90^{\circ}C$ waxy rice paste and increased as the fermentation progressed. Total acidity of waxy rice pastes gelatinized at $70^{\circ}C$ and fermented for 15 hours were $2.7{\sim}1.3$ times higher than at $90^{\circ}C$, and then Lactococcus lactis had the lowest total acidity during fermentation. Viscosity of fermented paste (VFP) were lower than those of raw paste. VFPs gelatinized at $90^{\circ}C$ were markedly higher than those at $70^{\circ}C$ over 28% concentration. In L. lactis and Lactobacillus plantarum, VFPs fermented for 15 hours were over $2{\sim}3$ times lower than those fermented for 40 hours. Hunter's color lightness (L) and yellowness (b) were decreased according to the elevation of gelatinization temperature and fermentation time. L. lactis and L. plantarum-producing waxy rice pastes were the uniform micell type with a large air-pore size and amorphous micell type with a small air-pore size, respectively. Based on these results, L. lactis was a lower lactic acid-producing bacteria as well as uniform air-pore distribution on waxy rice paste. It was found to be a good sourpaste-fermenting strain for enhancement of quality properties of yakchobugak, as revealed through viscosity, total acidity, Hunter's color b value and scanning electron micrographs.

Swelling and Pasting Properties of Non-Waxy Rice Flour/Food Gum Systems

  • Song, Ji-Young;An, Young-Hyun;Kim, Jae-Suk;Choi, Jung-Do;Kim, Young-Chang;Shin, Mal-Shick
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.207-213
    • /
    • 2006
  • The effects of gellan gum (from S. paucimobilis), EPS-CB (exopolysaccharide from S. chungbukensis), and a series of commercial gums (arabic gum, xanthan gum, guar gum, deacyl gellan gum), on the swelling, rheological, and pasting properties of non-waxy rice flour dispersions were investigated. The swelling properties of rice flours in gellan or guar gum dispersion after heating were found to have increased with increasing gum concentrations, but the swelling properties of rice flour/other gum systems decreased with increasing concentrations. The rice flour/gum mixtures showed high shear-thinning flow behavior (n=0.14-0.32), and consistency index (K) was higher in guar gum than other gum dispersions. The initial pasting temperatures and peak times increased along with increasing gum concentration. The peak viscosity of rice flour increased in guar gum and deacyl gellan dispersions, and the breakdown and setback viscosity of the rice flour paste was lowest in the xanthan gum system, but remained higher than those of the control. The apparent viscosities of the rice flour/gellan gum mixture pastes were the highest among the tested combinations.

Rheological and Baking Studies of Rice-Wheat Flour Blends (쌀 및 밀 복합분의 물리적 성질 및 제빵시험)

  • Lee, Chun-Yung;Kim, Sung-Kon;Marston, P.E.
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.99-104
    • /
    • 1979
  • Rheolegical and baking properties of blends containing 10, 20 and 30 % of rice flours (Milyang 23, non-waxy and Tongil waxy) with wheat flour were investigated. Milyang-wheat blends showed higher amylograph paste viscosities at all reference points than waxy-wheat blends. Rice-wheat four blends had shorter farinograph stability than f·heat flour; however, the dough development time was similar between two blends. Breads produced from either Milyang-wheat or waxy-wheat flour blends at 10% rice level were acceptable compared with breads produced from wheat flour.

  • PDF

Analysis of Traditional Process for Yukwa Making, a Korean Puffed Rice Snack (I): Steeping and Punching Processes (전통 유과가공공정의 분석(I): 수침 및 꽈리치기 공정)

  • Kang, Sun-Hee;Ryu, Gi-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.597-603
    • /
    • 2002
  • The analysis of traditional process for a Korean puffed rice snack (Yukwa) is needed to develop an advanced process for Yukwa-making. Steeping and punching (Koarichigi) processes, consume time and labor in Yukwa-making, were analyzed on this study. Steeping of waxy rice at $15^{\circ}C$ for 3 days was required to equilibrate moisture absorption in waxy rice kernel. However, steeping for more than 6 days was required soft texture and small air cell distribution of Yukwa. Protein content at pericarp on endosperm of waxy rice kernel was decreased and starch granule was damaged during steeping. RVA paste viscosity was the highest at 6 day steeping after than decreased. Expansion ratio of Yukwa was increased with the increase in steeping time. Air bubbles in dough after punching were uniformly distributed and kneading energy input was decreased with the increase in steeping time. Soft texture, unique texture of Yukwa could be controlled by controlling steeping time and kneading energy input during punching process.

Impact of Xanthan-locust Bean Gum Mixtures on Pasting/Paste Characteristics and Freeze-thaw Stabilities of Waxy Rice Starch (찹쌀 전분의 페이스팅/페이스트 특성 및 냉해동 안정성에 대한 잔탄검-로커스트콩검 혼합물의 영향)

  • Kim, Hyun-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.593-600
    • /
    • 2014
  • Normal rice starch (NRS) possesses high gelling and retrogradation tendencies, with poor freeze-thaw stability. This study investigated the effects of partial replacement of waxy rice starch (WRS) with gums on the pasting and viscoelastic properties as well as the freeze-thaw stability of the WRS paste. Xanthan gum (XAT), locust bean gum (LBG), and their mixtures were individually mixed with WRS at a ratio of 1:19 (w/w). WRS-gum mixtures were pasted using a rapid visco-analyzer at 5% total solid content, and analyzed with respect to the pasting and viscoelastic characteristics, and freeze-thaw stability. Pasting properties of WRS were retarded in pasting temperature and enhanced in pasting viscosity (although peak viscosity was varied) by partial replacement with gum and gum mixtures. Storage moduli of WRS-XAT:LBG pastes became similar to those of NRS paste with increasing angular frequency from 1 to 10 rad/s. Finally, WRS-XAT and WRS-XAT:LBG possessed more enhanced freeze-thaw stability than NRS.

Survey on preparation method of traditional home made kochujang (fermented hot pepper-soybean paste) (가정에서 담그는 고추장의 제조방법에 관한 조사 연구)

  • Shin, Dong-Hwa
    • Journal of the Korean Society of Food Culture
    • /
    • v.10 no.5
    • /
    • pp.427-434
    • /
    • 1995
  • The preparation method for traditional kochujang (fermented hot pepper-soybean paste) at home were surveyed by 1,436 housewives through the country by premade questionnaires. The kochujang meju (Korean style soybean Koji for kochujang) were made by solely soybean (45.3% of respondents) or soybean with rice (26.3%) from September to November (52.2%) or December to February (32.7%). The shape of meju was either doughnut (28.4%) or brick (25.6%) type. Kochujang making seasons were either from March to May (56.6%) or December to February (25.0%) and it was prepared in proportion of mostly $6{\sim}10%$ meju powder (32%) with over 20% of red pepper powder (57.2%) prepared by seed removed dry red pepper. Subsidiary ingredients for kochujang making were boiled waxy rice (73.5%), malt (33.3%), corn syrup (18.9%) or corn syrup with malt (21.9%). After mixing all ingredients, kochujang in clay pot were occasionally exposed to the sun for fermentation for $3{\sim}4$ months (35.0%) or $1{\sim}2$ months (34.7%).

  • PDF

Physicochemical Characteristics of Acid Thinned and High Pressure Treated Waxy Rice Starch for Yugwa (Korean Rice Snack) Production

  • Cha, Jae-Yoon;Choi, Ae-Jin;Chun, Bo-Youn;Kim, Min-Ji;Chun, Hyang-Sook;Kim, Chul-Jin;Cho, Yong-Jin;Kim, Chong-Tai
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.943-947
    • /
    • 2007
  • The acid modification of waxy rice starch was conducted to improve the yugwa production process. The intrinsic viscosity, paste viscosity, and differential scanning calorimetry characteristics of acid modified starch were measured, and bandaegi and yugwa prepared from acid modified starch were evaluated. The intrinsic viscosities of acid thinned starches were 1.48, 1.27, 1.15, and 0.91 mL/g after reaction times of 1, 2, 3, and 4 hr, respectively. The gelatinization enthalpy was reduced from 16.3 J/g in native starch to 15.8, 15.3, 14.7, and 14.5 J/g in acid thinned starches as the time of acid thinning increased. The peak viscosity and final viscosity decreased with increasing the time of acid thinning, but the pasting temperature was slightly increased in acid thinned starches. The hardness of bandaegi from acid thinned starches under high pressure greatly decreased relative to the control, typical yugwa. Yugwa from acid thinned starch under high pressure maintained a homogeneous structure containing tiny and uniform cells similar to that of native waxy rice starch used for typical yugwa. Acid thinning under high pressure appears to be a good alternative to the existing steeping process for better yugwa quality.

Rheological Properties of Waxy Rice Starch-Gum Mixtures in Steady and Dynamic Shear

  • Kim, Do-Dan;Lee, Young-Seung;Yoo, Byoung-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.3
    • /
    • pp.233-239
    • /
    • 2009
  • The effects of guar gum (GG) and xanthan gum (XG) at different concentrations (0, 0.2, 0.4, and 0.6% w/w) on the rheological properties of Korean waxy rice starch (WRS) pastes were evaluated under both steady and dynamic shear conditions. The flow properties of WRS-gum mixtures were determined from the rheological parameters of the power law model. The addition of GG and XG to WRS resulted in an increase in the apparent viscosity ($\eta_{a,100}$) and consistency index (K) values obtained from power law model. The flow behavior index (n) values of the WRS-XG mixtures decreased with an increase in gum concentration while there was only a marginal difference between n values for the WRS-GG mixtures. Dynamic moduli (G', G", and $\eta^*$) values in the WRS-gum mixture systems also increased with an increase in gum concentration. WRS-XG mixtures had higher dynamic moduli and lower tan $\delta$ (ratio of G"/G') values than WRS-GG mixtures, indicating that the higher dynamic rheological properties of WRS-XG can be attributed to an increase in the viscoelasticity of the continuous phase in the starch-gum mixture systems, which was due to the higher viscoleastic properties of XG compared to GG. The dynamic ($\eta^*$) and steady shear ($\eta_a$) viscosities of the WRS-XG paste at a 0.2% gum concentration followed the Cox-Merz superposition rule.