• Title, Summary, Keyword: weak Morrey estimates

Search Result 1, Processing Time 0.028 seconds

GLOBAL WEAK MORREY ESTIMATES FOR SOME ULTRAPARABOLIC OPERATORS OF KOLMOGOROV-FOKKER-PLANCK TYPE

  • Feng, Xiaojing;Niu, Pengcheng;Zhu, Maochun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1241-1257
    • /
    • 2014
  • We consider a class of hypoelliptic operators of the following type $$L=\sum_{i,j=1}^{p_0}a_{ij}{\partial}^2_{x_ix_j}+\sum_{i,j=1}^{N}b_{ij}x_i{\partial}_{x_j}-{\partial}_t$$, where ($a_{ij}$), ($b_{ij}$) are constant matrices and ($a_{ij}$) is symmetric positive definite on $\mathbb{R}^{p_0}$ ($p_0{\leqslant}N$). By establishing global Morrey estimates of singular integral on the homogenous space and the relation between Morrey space and weak Morrey space, we obtain the global weak Morrey estimates of the operator L on the whole space $\mathbb{R}^{N+1}$.