Effects of Pretreatment and Storage Condition on the Quality of Canned Boiled Oyster

Rak-Hyeun NO, Dae-Whan SEONG, Han-Serb YANG and Dae-Seok BYUN
Department of Food Processing, Tong-yeong Fisheries Junior College,
445, Inpyeung-dong, Chungmu, 603 Korea

Discoloration of canned boiled oysters during storage is one of the serious problems which affect the quality of the products as well as the nutritive value. Usually the factors influencing the quality of canned boiled oysters are the process of pretreatments and the storage temperature of the products.

In the present work, the changes of the total chlorophylls and carotenoids in the meat and the viscera of oysters were determined in order to make certain the procedure of the discoloration.

In addition, the amino-N and the available lysine as factors of the nutritive value were also checked.

In case of treatment with additives, direct addition of syrups containing additives just before seaming or soaking boiled oysters into the solution of additives seemed to have mild effects on retardation of discoloration.

The migration of carotenoids from the viscera into the meat was faster than that of chlorophyll resulting in yellowing of the products preceded greening caused by the chlorophylls.

Treatment with 0.5% Na₂EDTA of 2.5% brine retarded discoloration and available lysine loss of the products while sodium-polyphosphate accelerated them. It was probably due to that sodium-polyphosphate could affect the softening or breakdown of the muscle of oysters.

But most of all, storage temperature of canned boiled oysters seemed to be the major factor influencing the discoloration and nutritive loss of the products.

結論

國內供類養殖高の 55% 以上を占める有孔生活動物の 10年間の割合が増加するのを防ぐために、飼育水産物の 生活動物の 生活度を年年増加させた。有孔生活動物の 生活度が 有孔生活動物の 主要な

* 本研究は1980年度文部省学術研究助成費を一部頂けました。
** 現勤務先：釜山水産大学 食品營養学科
중앙자동차 전장에서 상용화의 여파로 도착 순수한 다음, stainless-steel 액스로 물과 내경을 분리하여 각각 5.10
가스로, 이반 액로 500ml로 가산 후 -4°C로
서 15시간 추출하였다. 추출한 액은 Celite 545을 여과
값로 합유이과기(3G-4)에서 여과하고, 저번은
래서 약 50ml로 -4°C로 서 4시간 추출하여 약
의 추출액과 합쳐 250ml로 용액하였다.

1. 플로로프린의 분석

2. 카르티지의 분석

3. 저장의 지표

4. 급격한 검사

Ajinomoto 연구소에서 항산화 측정법(소, 1977)
하여 따르에 따라 구축하여 Shimadzu
UV 140 분광광도계로 662, 645nm의 영양도를

정하고 Camar와 Zscheile의 방식(소, 1977)에 따라

계산하였다.

2) 저장의 지표

3) 저장의 지표

Carpenter(1969)의 EDBF법에 따라 측정하고, 검

량기준에 따라 인과, 수용량을 계산하였다.

4) 검사

Ajinomoto 연구소에서 항산화 측정법(소, 1977)
하여 따르에 따라 구축하여 Shimadzu
UV 140 분광광도계로 662, 645nm의 영양도를

정하고 Camar와 Zscheile의 방식(소, 1977)에 따라

계산하였다.

결과 및 검토

1. 前處理 방법에 따른 影響

1) 添加劑의 處理方法에 따른 影響

 서로 다른 前處理方法에 따라 만든 풍조림을 前處理直後와 2개월 간 常温에서 貯蔵한 後 各々 水質로필과 有效性 lysine을 複定하였다.

照試料와 거의 같은 分配比였으나.

 또한, 煮熟液에 添加剤를 넣고 煮熟한 경우는 煮熟液이 煮熟을 보고 이 色이 色으로 影響한 결과 色이 煮熟されたもの로 煮熟하는 것을 볼 수 있었다. 添加剤 溶液을 水中에 적용 注入하는 方法은 그 效果는 儀検사나 食品衛生上の 問題가 끝을 수가 있으므로 添加剤 處理는 煮熟 後 添加剤 溶液에 沈濁하는 方法이 가장 나은 것으로 생각된다.

Table 1. Stability of chlorophylls in canned boiled oysters treated with additives by different methods

<table>
<thead>
<tr>
<th>Code</th>
<th>Treatments</th>
<th>pH</th>
<th>Immediately after canning</th>
<th>After 2 months storage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Muscle Viscera Ratio(M/V)</td>
<td>Muscle Viscera Ratio(M/V)</td>
</tr>
<tr>
<td>D</td>
<td>boiled with the additives solution*</td>
<td>4</td>
<td>16</td>
<td>845</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>14</td>
<td>717</td>
</tr>
<tr>
<td>J</td>
<td>soaked into the additives solution* after boiling for 30min</td>
<td>4</td>
<td>14</td>
<td>731</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>15</td>
<td>827</td>
</tr>
<tr>
<td>L</td>
<td>filled the additives solution** in sample can just before canning</td>
<td>4</td>
<td>13</td>
<td>703</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>14</td>
<td>790</td>
</tr>
<tr>
<td>N</td>
<td>control</td>
<td>4</td>
<td>16</td>
<td>836</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>14</td>
<td>764</td>
</tr>
</tbody>
</table>

* 0.1% erthyoric acid-citric acid, 0.5% Na2EDTA and 10% sodium-polyphosphate,
** 0.001% erthyoric acid-citric acid, 0.005% Na2EDTA and 0.1% sodium-polyphosphate,
M/V: muscle/viscera.

Table 1에서 보낸 前處理方法의 色과 効能 分配比는 前處理直後는 處理方法에 관계없이 거의 비슷하며 前處理直後는 處理方法에 따라 色明確의 分配比를 보였다. 煮熟 後 添加剤가 들어 있는 溶液에 沈濁하는 方法가 添加剤 溶液を 水中에 注入하는 方法이 비교적 낮은 편이었으 며 煮熟液에 添加剤를 溶解시키는 煮熟處理한 것은 色에 影響은 전반적으로 알카리性에서 더 安定하여 李(1976)의 報告와 一致하였다.

Table 2. Comparison of the content of available lysine in canned boiled oysters treated with additives by different methods

<table>
<thead>
<tr>
<th>Code</th>
<th>pH</th>
<th>Immediately after canning</th>
<th>After 2 months storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>4</td>
<td>787.4</td>
<td>660.6</td>
</tr>
<tr>
<td>DY</td>
<td>9</td>
<td>800.7</td>
<td>659.2</td>
</tr>
<tr>
<td>I</td>
<td>4</td>
<td>808.9</td>
<td>676.2</td>
</tr>
<tr>
<td>K</td>
<td>9</td>
<td>805.6</td>
<td>667.8</td>
</tr>
<tr>
<td>L</td>
<td>4</td>
<td>804.3</td>
<td>679.5</td>
</tr>
<tr>
<td>M</td>
<td>9</td>
<td>801.7</td>
<td>669.3</td>
</tr>
<tr>
<td>N</td>
<td>4</td>
<td>810.7</td>
<td>663.3</td>
</tr>
<tr>
<td>P</td>
<td>9</td>
<td>806.1</td>
<td>652.6</td>
</tr>
</tbody>
</table>

Each code has same meanings as in Table 1.
Table 3. Stability of chlorophylls in canned boiled oysters by soaking into the different additives solutions

<table>
<thead>
<tr>
<th>Code</th>
<th>Additives</th>
<th>pH</th>
<th>Immediately after canning</th>
<th>After 2 months storage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Muscle</td>
<td>Viscera</td>
</tr>
<tr>
<td>J</td>
<td>0.1% erythorbic acid-citric acid, 10% sodium-polyphosphate and 0.5% Na₂EDTA</td>
<td>4</td>
<td>14</td>
<td>731</td>
</tr>
<tr>
<td>K</td>
<td>"</td>
<td>9</td>
<td>15</td>
<td>827</td>
</tr>
<tr>
<td>F</td>
<td>10% sodium-polyphosphate and 0.5% Na₂EDTA</td>
<td>4</td>
<td>13</td>
<td>691</td>
</tr>
<tr>
<td>FY</td>
<td>"</td>
<td>9</td>
<td>16</td>
<td>829</td>
</tr>
<tr>
<td>G</td>
<td>0.1% erythorbic acid-citric acid and 0.5% Na₂EDTA</td>
<td>4</td>
<td>14</td>
<td>736</td>
</tr>
<tr>
<td>GY</td>
<td>"</td>
<td>9</td>
<td>13</td>
<td>714</td>
</tr>
<tr>
<td>H</td>
<td>0.1% erythorbic acid-citric acid and 10% sodium-polyphosphate</td>
<td>4</td>
<td>15</td>
<td>809</td>
</tr>
<tr>
<td>HY</td>
<td>"</td>
<td>9</td>
<td>13</td>
<td>711</td>
</tr>
<tr>
<td>N</td>
<td>control</td>
<td>4</td>
<td>16</td>
<td>836</td>
</tr>
<tr>
<td>P</td>
<td>"</td>
<td>9</td>
<td>14</td>
<td>764</td>
</tr>
</tbody>
</table>

M/V: muscle/viscera.

하지 않은 것에서 비록 약간의 효과가 있었다.
P Holmes은 플레스티충은 동물로 추정되는 대비에서는 악성에서의 주입이 약간에서 보다 적었는데 이것은 lysine의 ε-NH₂기의 반응성이 악성에서는 보다 억제되며 희박한 것이다.

2) 添加物의種類에 따른影響
添加物의種類에 따른 결과를 보기 위하여煮熟後添加物種類別溶液에 회전시켰을 때의 플레스티충 안정성과有効性 lysine의含量変化を測定하여 各々 Table 3의 4과 4의 나타났다.
플레스티충의安定度(Table 3)을 보면 煮熟直後는肉과內殼的色素 分配比가 1/53 전후로 비슷했으나 2개월이 지나 푸는 1/45 전후로 内殼色素가 肉으로 어느 정도 유전한 것을 볼 수 있다. 此中添加物과 Na₂EDTA가 混合된溶液에 沉澱한 것이 가장 큰 것은 뒷면 硼酸类 溶液에 沉澱한 것은 오히려 밀착되지 못한 결과였다. 이는 단순히 各成分의差異에서 오는 것이 아니면 混合의으로 사용한 태반이나 다시 페스테를 필요가 있을 것으로 생각된다.

Table 4의 有效性 lysine도 添加物과 Na₂EDTA가 混合된 溶液에 沉澱한 것이 가장 수순한 결과를 보였으며, pH의影響도 前項과 같다.
煮熟한 고온 瞄封할 때까지 空気中에서 60分, 120

Table 4. Comparison of the content of available lysine in canned boiled oysters by soaking into the different additives solutions

<table>
<thead>
<tr>
<th>Code</th>
<th>pH</th>
<th>Available lysine (mg%)</th>
<th>Immediately after canning</th>
<th>After 2 months storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>4</td>
<td>808.9</td>
<td>676.2</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>9</td>
<td>805.6</td>
<td>667.8</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>4</td>
<td>805.2</td>
<td>670.5</td>
<td></td>
</tr>
<tr>
<td>FY</td>
<td>9</td>
<td>813.9</td>
<td>677.9</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>815.3</td>
<td>688.7</td>
<td></td>
</tr>
<tr>
<td>GY</td>
<td>9</td>
<td>801.5</td>
<td>672.3</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>4</td>
<td>809.4</td>
<td>679.2</td>
<td></td>
</tr>
<tr>
<td>HY</td>
<td>9</td>
<td>810.5</td>
<td>667.1</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>4</td>
<td>810.7</td>
<td>663.3</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>9</td>
<td>806.1</td>
<td>652.6</td>
<td></td>
</tr>
</tbody>
</table>

Each code has the same meanings as in Table 3.
분, 180분간 노출한 후 냉동보관하여 색상과 영양성분을 측정한 결과, 방장시간이 짧아짐에 따라 그 영향이 감소할 것을 알았으며, 각 경우에 의한 카로
티노이드와 아미노산의 영향을 측정하여 총합 플로토
질과 유효성 lysine의 경우와 유사한 경향을 보았기
에 그 결과는 유사하다.

2. 냉동보관에 따른 영향

앞의 결과는 캡슐을 복합적으로 사용하였으나,
만들어 이들 중 4°C, 20°C, 55°C로 냉동보관하여 색상
과 영양성분의 손실을 감소시켰다.

1) 냉동보관의 성분

공통보관의 내림성분은 냉동 보관기중의 습 건도에 따라
고기 점을 측정한 결과를 다음과 같이 냉동고기로
보관한 카로티노이드, 아미노산, 유효성 lysine는 Table 5에 나타났다.

음식물의 플로토질과 카로티노이드의 분산 실험 각
각 1/55, 1/68로 거의 소실이 나타났고 있으

<table>
<thead>
<tr>
<th>Table 5. Contents of chlorophylls, carotenoids, amino-N and available lysine in sample oysters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Raw Muscle Viscera</td>
</tr>
<tr>
<td>Boiled Muscle Viscera</td>
</tr>
</tbody>
</table>

모르 귀 독감의 인 오는 확정히 하였다. 그러므로
이들에 대한 검증은 각각 관찰적인 방식으로, 빠른
고기 번역 1% 정도가 보였으며, 빠른다. 또한
이들은 산소적 균형으로 사용하여 냉동보관을
아미노산 영양과 유효성 lysine는 냉동보관에 따라 대

<table>
<thead>
<tr>
<th>Table 6. Changes in chlorophyll content of muscle and viscera of canned boiled oysters treated with additives during storage under different conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage time (months) (Unit: μg/g)</td>
</tr>
<tr>
<td>Code</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1A</td>
</tr>
<tr>
<td>1B</td>
</tr>
<tr>
<td>1C</td>
</tr>
<tr>
<td>2A</td>
</tr>
<tr>
<td>2B</td>
</tr>
<tr>
<td>2C</td>
</tr>
<tr>
<td>3A</td>
</tr>
<tr>
<td>3B</td>
</tr>
<tr>
<td>3C</td>
</tr>
<tr>
<td>4B</td>
</tr>
</tbody>
</table>

Explanation of codes:
1: Control, 2: 10% sodium-polyphosphate, 3: 0.5% Na₂EDTA, 4: 0.1% erythorbic acid-citric acid, A: 55°C, B: 20°C, C: 4°C.

Numbers in parentheses are the ratio of muscle (M) vs. viscera (V) in chlorophyll content.
단히 많은 양의 증상을 보였다.

2) 클로로포필의 변화

添加剤의 種類를 달리하여 製造한 골동조합을 4°C, 20°C, 55°C에서 5개월 동안 貯蔵하였는데 1개월마다 肉과 内臓의 클로로포필의 양을 計測하여 體色의 增加 指標로 삼았다. Table 6에서는 같은 貯蔵期間을 동해 肉의 色素量을 1.5~3.5 增加하고 内臓의 경우는 10~20%는 减少하는 바 있었다. 이것은 長田(1970a, 1970b), 懐(1974), 李等(1976)의 報告된 바와 같이 貯蔵中 클로로포필의 파괴와 内臓에서 肉으로의 色素의 移行結果이며, 色素의 파괴방보다 内臓으로부터的 移行量이 원시 增加을 알 수 있다고 그 결과로 異変이 나타난 것이라고 생각된다.

添加剤别 效果を 보면 20°C에서 貯蔵한 對照試料의 色素分配比가 1/21인데 비해 剩余青, Na₂EDTA, 抗酸化剤 處理試料는 각각 1/20, 1/25, 1/24로 Na₂-EDTA와 抗酸化剤 處理가 어느 정도 效果가 있었 다. 懐(1974)는 アストラス青이나 흰 돼青 등에 효과 를 거의 인정할 수 없다고 하였으며, 李等(1975)은

Table 7. Changes in carotenoid content of muscle and viscera of canned boiled oysters treated with additives during storage under different conditions (Unit:µg/g)

<table>
<thead>
<tr>
<th>Code*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>V</td>
<td>M</td>
<td>V</td>
<td>M</td>
<td>V</td>
</tr>
<tr>
<td>1A</td>
<td>15</td>
<td>547</td>
<td>(1/36)</td>
<td>22</td>
<td>538</td>
<td>(1/24)</td>
</tr>
<tr>
<td>1B</td>
<td>13</td>
<td>701</td>
<td>(1/54)</td>
<td>17</td>
<td>646</td>
<td>(1/38)</td>
</tr>
<tr>
<td>1C</td>
<td>15</td>
<td>635</td>
<td>(1/42)</td>
<td>18</td>
<td>591</td>
<td>(1/33)</td>
</tr>
<tr>
<td>2A</td>
<td>18</td>
<td>624</td>
<td>(1/35)</td>
<td>27</td>
<td>582</td>
<td>(1/22)</td>
</tr>
<tr>
<td>2B</td>
<td>14</td>
<td>723</td>
<td>(1/52)</td>
<td>19</td>
<td>695</td>
<td>(1/37)</td>
</tr>
<tr>
<td>2C</td>
<td>15</td>
<td>644</td>
<td>(1/40)</td>
<td>18</td>
<td>571</td>
<td>(1/32)</td>
</tr>
<tr>
<td>3A</td>
<td>18</td>
<td>662</td>
<td>(1/36)</td>
<td>23</td>
<td>634</td>
<td>(1/28)</td>
</tr>
<tr>
<td>3B</td>
<td>12</td>
<td>712</td>
<td>(1/59)</td>
<td>17</td>
<td>67</td>
<td>(1/40)</td>
</tr>
<tr>
<td>3C</td>
<td>14</td>
<td>650</td>
<td>(1/46)</td>
<td>18</td>
<td>668</td>
<td>(1/37)</td>
</tr>
<tr>
<td>4B</td>
<td>13</td>
<td>710</td>
<td>(1/55)</td>
<td>16</td>
<td>655</td>
<td>(1/41)</td>
</tr>
</tbody>
</table>

* Refer to Table 6. Numbers in parentheses are the ratio of muscle(M) vs. viscera(V).
이번은 거의 1-2개월간 저장하는 동안에 달성되는 결과의 비교하여 보았는데, 저장기간 중 카로티노이드의 파괴가 매우 컸으며, 저장기간 중 카로티노이드의 파괴는 30-60%로, 클로로포필보다 원심분리도 적었다. 또한 내부색소의 위험도, 내부색소의 파괴도 클로로포필보다 현저하게 적었는데 이는 클로로포필의 파괴가 되지 않기 때문에 추천된다.

카로티노이드의 안정도에 미치는 Na2EDTA 효과

클로로포필의 안정도에 미치는 내부색소의 파괴도 클로로포필보다 현저하게 적었는데, 이는 클로로포필의 파괴가 되지 않는 것으로 생각된다.

Table 8. Changes in the content of amino-N of canned boiled oysters treated with additives during storage under different conditions

<table>
<thead>
<tr>
<th>Code</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>361.5</td>
<td>278.9</td>
<td>234.6</td>
<td>152.5</td>
<td>122.9</td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>380.5</td>
<td>297.7</td>
<td>229.2</td>
<td>169.7</td>
<td>128.4</td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>395.5</td>
<td>314.2</td>
<td>240.9</td>
<td>186.4</td>
<td>147.2</td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>367.1</td>
<td>230.4</td>
<td>211.8</td>
<td>147.6</td>
<td>115.7</td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>362.6</td>
<td>276.2</td>
<td>205.4</td>
<td>155.9</td>
<td>110.2</td>
<td></td>
</tr>
<tr>
<td>2C</td>
<td>288.7</td>
<td>299.5</td>
<td>236.1</td>
<td>169.2</td>
<td>123.4</td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>371.2</td>
<td>294.6</td>
<td>225.3</td>
<td>169.1</td>
<td>125.0</td>
<td></td>
</tr>
<tr>
<td>3B</td>
<td>381.7</td>
<td>302.5</td>
<td>235.6</td>
<td>178.7</td>
<td>136.2</td>
<td></td>
</tr>
<tr>
<td>3C</td>
<td>400.7</td>
<td>321.6</td>
<td>261.6</td>
<td>200.7</td>
<td>159.8</td>
<td></td>
</tr>
<tr>
<td>4B</td>
<td>488.1</td>
<td>396.3</td>
<td>305.4</td>
<td>242.9</td>
<td>183.5</td>
<td>141.7</td>
</tr>
</tbody>
</table>

* Refer to Table 6.

가 어느 정도 인정되기 Zukor의 실험에 대한 입증을 보이지 않았다. sodium-polyphosphate의 경우 클로로포필의 결과와 유사하니 그 원인은 아직 언급한 바와 같은 것으로 생각된다.

카로티노이드의 안정도에 미치는 가장 큰 요인은 역시 저장기간이며, 저장직후 뉴욕 내부에 저장한 상태의 혈미가 1/55 전후였던 것이 4°C, 20°C, 55°C에서 저장 5개월 후는 각각 1/51-1/11, 1/15-1/20 으로 매우 큰 차이를 보였다.

4) 아미노산의 분해

클로로포필의 저장소에 있어서 분해는 저온 분해를 위하여 단백질 아미노산 분해가 (Table 8)와 보존성 lysine(Table 9)를 반영하였다.

아미노산의 분해는 총 저장기간에 걸쳐 70%이상의 단백질 분해가 보이기 때문에, 저장기간 중 분해가 적었다. 분해의 결과 보여지는 분해는 20°C 저장의 경우 시료별로 분해가 74%, 77%, 82%, 81%, 80%, 79%로 보고 있다.
Table 9. Changes in the content of available lysine of canned boiled oysters treated with additives during storage under different conditions (Unit: mg%)

<table>
<thead>
<tr>
<th>Code*</th>
<th>Storage time(months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1A</td>
<td>361.5</td>
</tr>
<tr>
<td>1B</td>
<td>886.0</td>
</tr>
<tr>
<td>1C</td>
<td>809.3</td>
</tr>
<tr>
<td>2A</td>
<td>737.9</td>
</tr>
<tr>
<td>2B</td>
<td>881.2</td>
</tr>
<tr>
<td>2C</td>
<td>804.5</td>
</tr>
<tr>
<td>3A</td>
<td>748.1</td>
</tr>
<tr>
<td>3B</td>
<td>890.1</td>
</tr>
<tr>
<td>3C</td>
<td>817.5</td>
</tr>
<tr>
<td>4B</td>
<td>887.6</td>
</tr>
</tbody>
</table>

* Refer to Table 6.

Table 10. Differences of mean scores (a) between two canned boiled oysters and differences with an asterisk mean significance at the 5% point (b)

<table>
<thead>
<tr>
<th>Code</th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>3A</th>
<th>3B</th>
<th>3C</th>
<th>4B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>—</td>
<td>1.92*</td>
<td>2.08*</td>
<td>0.75</td>
<td>0.30</td>
<td>0.67</td>
<td>0.42</td>
<td>1.50*</td>
<td>2.25*</td>
<td>1.08</td>
</tr>
<tr>
<td>1B</td>
<td>—</td>
<td>1.14</td>
<td>1.67*</td>
<td>0.92</td>
<td>0.25</td>
<td>0.50</td>
<td>0.58</td>
<td>1.33</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>—</td>
<td>2.83*</td>
<td>2.08*</td>
<td>1.41</td>
<td>1.66*</td>
<td>0.58</td>
<td>0.17</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>—</td>
<td>0.75</td>
<td>1.42</td>
<td>1.17</td>
<td>2.25*</td>
<td>3.00*</td>
<td>1.83*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>—</td>
<td>0.67*</td>
<td>0.42</td>
<td>1.50*</td>
<td>2.25*</td>
<td>1.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C</td>
<td>—</td>
<td>0.25</td>
<td>0.83</td>
<td>1.58*</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>—</td>
<td>1.08</td>
<td>1.83*</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3B</td>
<td>—</td>
<td>0.75</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3C</td>
<td>—</td>
<td>—</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a): Mean scores were calculated from organoleptic test for color, taste, odor, firmness, and turbidity of fluid of canned boiled oysters after 5 months storage.
(b): The least significant range was 1.45.

The explanation of codes are the same as Table 6.
前處理과 저장조건에 따른조림의 촉매에 미치는 영향

두 실험용의 평균값을 구하여 Table 1에 나타내었다. 분석결과와 실험 결과와 비교하면, 5% 수준에서 유의한 차이가 없는 것으로 나타났으며, so- dium-polyphosphate로 처리하여 55℃에서 저장한
조림 (2A)과 NaN EDTA로 처리하여 4℃에서 저장한 조림 (3C)가 가장 큰 차이를 보였다. 그 과일로 대부분의 결과는 3개들의 화학적 성분의 측정결과와 유사한 경향을 나타내었다.

요약

동물조림의 저장조건에 따라 영향을 미치는 촉매와 저장조건의 차이가 유의한 차이가 있는 것으로 나타났으며, sodium-polyphosphate로 처리하여 55℃에서 저장한 조림의 발효가 닫히고, NaN EDTA로 처리하여 4℃에서 저장한 조림의 발효가 높은 경향을 보였다.

文献

李春生·鄭承鎬·金泳賢·柳炳万·河柱勲·具厚圭·成洙濤·梁晳澤. 1975. 醫食의 加工 適性. 3. 음의 加工 適性. 한국음식 8(9), 90–100.

