Studies on Lipids in Fresh-Water Fishes

7. Comparison of Lipid Components among Wild and Cultured Eel (*Anguilla japonica*), and Conger Eel (*Astroconger myriaster*)

Jin-Ho Choi, Chae-Hwan Rhim, Tae-Jin Bae
Department of Nutrition and Food Science, National Fisheries University of Pusan

Dae-Seok Byun
Faculty of Medicine, University of Tokyo

and

Tai-Heon Yoon
Clinical Nutrition Research Center, College of Hallym
(Received March 15, 1985)

This study was designed to compare the lipid components among wild and cultured eel, *Anguilla japonica*, and conger eel, *Astroconger myriaster*. The lipid components of cultured eel were analyzed and compared with those of wild and conger eel.

In the content of total lipid, the lipid content in cultured eel was slightly higher than that in wild one, but 2 times higher than that in conger eel. The lipid contents in edible portion of wild and cultured eel were 5 times higher than those in viscera, but the lipid content in edible portion of conger eel showed a similar trend to that in viscera.

In the fatty acid composition of neutral lipid in edible portion, percentages of C16:0, C16:1 and C18:1 in cultured eel were higher than those in wild one, while percentages of C16:0, C18:0, C20:0, C20:1, C22:5, and C22:6 lower, and percentages of C18:0, C20:1, and C22:6 in conger eel were noticeably higher than those in wild and cultured eels. In the case of phospholipid in edible portion, percentages of C16:0 and C18:2 in cultured eel were higher than those in wild one, while percentages of C18:0, C18:1, C16:1, C18:2, C20:4, C20:5, C22:5, and C22:6 lower.

The unsaturation (TUFA/TSFA) of neutral lipid was no significant difference among wild and cultured eel, and conger eel, but that of phospholipid in wild eel was higher than that in cultured eel and conger eel. The essential fatty acid content (TEFA) of neutral lipid in edible portion of wild eel was 3 times higher than that of cultured one, but the TEFA of phospholipid in edible portion was no significant difference among wild and cultured eels, and conger eel.

The ω3 highly unsaturated fatty acid content (ω3 HUFA) of neutral lipid in edible portion of wild
eel was 2.0 to 2.5 times higher than that of cultured eel and conger eel, but the w3 HUFA of phospholipid in edible portion of wild eel was noticeably higher than that of cultured eel and conger eel.

In the ratio (A/B) of fatty acid content (A) in cultured eel to that (B) in diet, the A/B ratios of C16:1 ω9, C18:1 ω3, C20:5 ω3 and C22:6 ω3 were 0.23 to 0.48 much lower than the other fatty acid. Consequently, it is considered that the ratios of ω3 HUFA is related to the biosynthesis of polyenoic acid and growth rate of cultured eel.

結論

近年まで著者等は淡水魚の脂質組成とその脂質の構成脂肪酸に関する研究が少ない。著者等は多様な脂質研究の基礎調査として、カツオ、アトロウ、トロウ等の脂質組成とその成因について研究を行った。

1. 材料及び方法

1.1 材料

本報の標本は、日本産のアズキイワナ(Anguilla japonica)およびトキジンイワナ(Astroconger myriaster)である。前者は、水深20m、温度9℃、pH8.0の水中で採集されたものである。後者は、水深15m、温度12℃、pH7.8の水中で採集されたものである。

1.2 方法

各試料は、総脂肪量を測定するために30±1℃の恒温水槽で水浴法により、皮部を含む肉質部を可食部、全身を内臓部に分離し、細切れにしたのち、105℃で乾燥したものを酸化防止剤を含め、分析用とした。

1.3 分析の方法

脂肪の抽出、分解、精製、脂肪酸の分離と構成脂肪酸分析の実験は、前報3)に準じて行った。

結果及び考察

Table 1 総脂質含量及び構成脂肪酸

Table 1. Total lipid contents in edible portion and viscera of wild and cultured eel, and conger eel

<table>
<thead>
<tr>
<th></th>
<th>Edible portion</th>
<th>Viscera</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild</td>
<td>27.16</td>
<td>5.10</td>
<td>16.13</td>
</tr>
<tr>
<td>Cultured</td>
<td>29.70</td>
<td>5.86</td>
<td>17.78</td>
</tr>
<tr>
<td>Conger</td>
<td>10.52</td>
<td>5.58</td>
<td>8.05</td>
</tr>
</tbody>
</table>

1. 中性脂肪及びブドウ糖の脂質組成

中性脂肪及びブドウ糖の脂質組成は、前報1)に準じて行った。中性脂肪の組成は、ブドウ糖が内臓部、ブドウ糖が可食部に多く含まれていた。
본 연구는 등어에 관한 연구

조직성분의 차이를 탐색하여, TLC 및 TLC scanner로 분리하였으며, 결과는 Table 2 및 3과 같다.

Table 2에서 난식 및 훈식 등어의 부위별 뇌물성분의 차이를 비교하여 보면, triglyceride(TG)가 68.5% 및 82.3%로 가장 많고, 그 다음이 esterified sterol(ES) 및 hydrocarbon(HC)이 8.6% 및 11.6%였으며, mono- 및 diglyceride의 술해는 훈식에서 가장 적었다. 또 부위별로 보면, 난식 및 훈식 등어의

Table 3에서 난식 및 훈식 등어의 부위별 구조성분의 차이를 비교하여 보면, 난식에서 phosphatidyl choline(PC)이 63.85% 및 65.45%로 가장 많고, 그 다음이 phosphatidyl ethanolamine(PE)으로 24.20% 및 27.05%로 나타났다.

1) monoglyceride; 2) free sterol; 3) diglyceride; 4) triglyceride; 5) esterified sterol & hydrocarbon.

1) phosphatidyl serine; 2) phosphatidyl choline; 3) phosphatidyl ethanolamine; 4) fatty acid.
3. 中性 및 纔脂質의 構成脂肪酸 組成

天然 및 養殖 魚長어와 魚長어의 中性 및 續脂質의 構成脂肪酸 組成은 Table 4 및 5와 같다.

Table 4에서 部位別 中性脂質의 構成脂肪酸을 比較하여 보면 天然 魚長어의 可食用部及 内臓部는 C16:0 酸(19.97%, 23.51%), C18:0 酸(4.565%, 4.565%), C20:0 酸(4.01%), 5.82%, C22:0 酸(2.851%)이었다.

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Edible portion</th>
<th>Viscera</th>
<th>Cultured</th>
<th>Edible portion</th>
<th>Viscera</th>
<th>Conger</th>
<th>Edible Portion</th>
<th>Viscera</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12:0</td>
<td>0.107</td>
<td>0.145</td>
<td>0.097</td>
<td>0.684</td>
<td></td>
<td>0.027</td>
<td>0.067</td>
<td></td>
</tr>
<tr>
<td>C13:0</td>
<td>0.038</td>
<td>0.043</td>
<td>0.004</td>
<td>0.354</td>
<td></td>
<td>0.009</td>
<td>trace</td>
<td></td>
</tr>
<tr>
<td>C14:0</td>
<td>2.500</td>
<td>2.886</td>
<td>3.331</td>
<td>2.835</td>
<td></td>
<td>0.079</td>
<td>4.272</td>
<td></td>
</tr>
<tr>
<td>C15:0</td>
<td>0.544</td>
<td>0.325</td>
<td>0.141</td>
<td>0.116</td>
<td></td>
<td>0.017</td>
<td>0.446</td>
<td></td>
</tr>
<tr>
<td>C17:0</td>
<td>0.623</td>
<td>0.798</td>
<td>0.142</td>
<td>0.535</td>
<td></td>
<td>0.439</td>
<td>1.041</td>
<td></td>
</tr>
<tr>
<td>C18:0</td>
<td>4.565</td>
<td>6.614</td>
<td>4.435</td>
<td>5.792</td>
<td></td>
<td>22.156</td>
<td>4.703</td>
<td></td>
</tr>
<tr>
<td>C20:0</td>
<td>4.321</td>
<td>1.492</td>
<td>0.413</td>
<td>0.366</td>
<td></td>
<td>0.926</td>
<td>1.187</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>32.671</td>
<td>35.818</td>
<td>30.490</td>
<td>30.461</td>
<td></td>
<td>29.065</td>
<td>32.518</td>
<td></td>
</tr>
<tr>
<td>C14:1 ω5</td>
<td>trace</td>
<td>trace</td>
<td>0.180</td>
<td>0.031</td>
<td>0.027</td>
<td>trace</td>
<td>trace</td>
<td></td>
</tr>
<tr>
<td>C16:1 ω7</td>
<td>10.613</td>
<td>8.413</td>
<td>6.401</td>
<td>6.214</td>
<td>6.214</td>
<td>0.249</td>
<td>6.036</td>
<td></td>
</tr>
<tr>
<td>C18:1 ω9</td>
<td>35.514</td>
<td>37.800</td>
<td>42.919</td>
<td>35.898</td>
<td>35.898</td>
<td>8.227</td>
<td>30.874</td>
<td></td>
</tr>
<tr>
<td>C20:1 ω9</td>
<td>1.462</td>
<td>2.199</td>
<td>3.154</td>
<td>3.232</td>
<td>3.232</td>
<td>trace</td>
<td>3.452</td>
<td></td>
</tr>
<tr>
<td>C22:1 ω9</td>
<td>0.764</td>
<td>0.457</td>
<td>0.908</td>
<td>1.059</td>
<td>1.059</td>
<td>0.492</td>
<td>1.662</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>48.553</td>
<td>48.869</td>
<td>53.562</td>
<td>46.434</td>
<td>46.434</td>
<td>8.968</td>
<td>42.024</td>
<td></td>
</tr>
<tr>
<td>C16:2 ω6</td>
<td>5.872</td>
<td>2.298</td>
<td>3.278</td>
<td>8.438</td>
<td>8.438</td>
<td>0.665</td>
<td>1.053</td>
<td></td>
</tr>
<tr>
<td>C18:2 ω3</td>
<td>4.321</td>
<td>1.492</td>
<td>0.413</td>
<td>0.735</td>
<td>0.735</td>
<td>0.926</td>
<td>1.187</td>
<td></td>
</tr>
<tr>
<td>C20:2 ω6</td>
<td>0.635</td>
<td>0.444</td>
<td>0.116</td>
<td>0.279</td>
<td>0.279</td>
<td>trace</td>
<td>0.214</td>
<td></td>
</tr>
<tr>
<td>C20:3 ω6</td>
<td>0.623</td>
<td>0.461</td>
<td>0.153</td>
<td>0.505</td>
<td>0.505</td>
<td>2.849</td>
<td>0.120</td>
<td></td>
</tr>
<tr>
<td>C20:4 ω6</td>
<td>2.093</td>
<td>1.757</td>
<td>0.264</td>
<td>0.915</td>
<td>0.915</td>
<td>34.688</td>
<td>1.131</td>
<td></td>
</tr>
<tr>
<td>C20:5 ω3</td>
<td>1.604</td>
<td>1.330</td>
<td>0.843</td>
<td>0.999</td>
<td>0.999</td>
<td>0.102</td>
<td>5.856</td>
<td></td>
</tr>
<tr>
<td>C22:4 ω5</td>
<td>0.685</td>
<td>0.735</td>
<td>0.036</td>
<td>0.085</td>
<td>0.085</td>
<td>1.350</td>
<td>0.381</td>
<td></td>
</tr>
<tr>
<td>C22:5 ω6</td>
<td>0.415</td>
<td>0.273</td>
<td>0.219</td>
<td>0.077</td>
<td>0.077</td>
<td>2.125</td>
<td>0.167</td>
<td></td>
</tr>
<tr>
<td>C22:5 ω3</td>
<td>1.838</td>
<td>1.249</td>
<td>0.678</td>
<td>0.465</td>
<td>0.465</td>
<td>0.726</td>
<td>1.813</td>
<td></td>
</tr>
<tr>
<td>C24:6 ω3</td>
<td>2.247</td>
<td>1.660</td>
<td>1.975</td>
<td>1.790</td>
<td>1.790</td>
<td>3.908</td>
<td>11.486</td>
<td></td>
</tr>
</tbody>
</table>

1) TUF/TSF: total unsaturated fatty acid/total saturated fatty acid; 2) TPEA/TMEA: total polyenoic acid/total monoenoic acid; 3) TEFA(%): total essential fatty acid; 4) ω3-HUFA (%): ω3 highly unsaturated fatty acid; 5) Σω9/Σω6: total ω9 unsaturated fatty acid/total ω6 unsaturated fatty acid.
<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Wild Edible portion</th>
<th>Wild Viscera</th>
<th>Cultured Edible portion</th>
<th>Cultured Viscera</th>
<th>Conger Edible portion</th>
<th>Conger Viscera</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12:0</td>
<td>0.242</td>
<td>0.065</td>
<td>0.176</td>
<td>0.257</td>
<td>0.171</td>
<td>0.119</td>
</tr>
<tr>
<td>C14:0</td>
<td>0.021</td>
<td>0.060</td>
<td>0.009</td>
<td>0.038</td>
<td>0.266</td>
<td>0.197</td>
</tr>
<tr>
<td>C16:0</td>
<td>3.898</td>
<td>1.228</td>
<td>1.210</td>
<td>1.212</td>
<td>1.991</td>
<td>1.773</td>
</tr>
<tr>
<td>C18:0</td>
<td>0.685</td>
<td>0.302</td>
<td>0.272</td>
<td>0.129</td>
<td>0.668</td>
<td>0.920</td>
</tr>
<tr>
<td>C18:3</td>
<td>1.039</td>
<td>0.845</td>
<td>0.626</td>
<td>0.790</td>
<td>1.657</td>
<td>1.404</td>
</tr>
<tr>
<td>C20:0</td>
<td>2.677</td>
<td>7.834</td>
<td>6.967</td>
<td>12.149</td>
<td>7.306</td>
<td>11.061</td>
</tr>
<tr>
<td>C20:4</td>
<td>1.555</td>
<td>2.118</td>
<td>0.509</td>
<td>1.412</td>
<td>1.365</td>
<td>1.732</td>
</tr>
<tr>
<td>Total</td>
<td>32.715</td>
<td>28.575</td>
<td>28.039</td>
<td>41.415</td>
<td>42.140</td>
<td>47.369</td>
</tr>
<tr>
<td>C12:1 ω6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C14:1 ω5</td>
<td>trace</td>
<td>0.005</td>
<td>0.165</td>
<td>0.145</td>
<td>0.086</td>
<td>—</td>
</tr>
<tr>
<td>C20:1 ω9</td>
<td>3.536</td>
<td>1.048</td>
<td>2.050</td>
<td>2.514</td>
<td>3.233</td>
<td>1.651</td>
</tr>
<tr>
<td>C22:1 ω9</td>
<td>1.096</td>
<td>0.315</td>
<td>0.458</td>
<td>0.339</td>
<td>0.186</td>
<td>0.336</td>
</tr>
<tr>
<td>Total</td>
<td>42.559</td>
<td>24.382</td>
<td>33.326</td>
<td>30.878</td>
<td>42.717</td>
<td>26.867</td>
</tr>
<tr>
<td>C18:2 ω6</td>
<td>1.784</td>
<td>2.680</td>
<td>2.743</td>
<td>7.738</td>
<td>2.049</td>
<td>1.203</td>
</tr>
<tr>
<td>C18:3 ω3</td>
<td>1.555</td>
<td>2.118</td>
<td>0.509</td>
<td>1.412</td>
<td>1.365</td>
<td>1.732</td>
</tr>
<tr>
<td>C20:2 ω6</td>
<td>0.215</td>
<td>0.589</td>
<td>0.229</td>
<td>1.375</td>
<td>1.624</td>
<td>0.747</td>
</tr>
<tr>
<td>C20:3 ω6</td>
<td>0.141</td>
<td>0.702</td>
<td>0.222</td>
<td>1.076</td>
<td>0.006</td>
<td>0.053</td>
</tr>
<tr>
<td>C20:4 ω6</td>
<td>1.279</td>
<td>8.180</td>
<td>0.340</td>
<td>2.745</td>
<td>0.643</td>
<td>1.192</td>
</tr>
<tr>
<td>C20:3 ω3</td>
<td>2.421</td>
<td>3.466</td>
<td>0.191</td>
<td>1.710</td>
<td>0.332</td>
<td>0.797</td>
</tr>
<tr>
<td>C22:2 ω6</td>
<td>0.479</td>
<td>2.534</td>
<td>0.015</td>
<td>0.420</td>
<td>0.374</td>
<td>0.184</td>
</tr>
<tr>
<td>C22:3 ω6</td>
<td>0.703</td>
<td>0.984</td>
<td>0.080</td>
<td>0.580</td>
<td>0.005</td>
<td>0.048</td>
</tr>
<tr>
<td>C22:2 ω3</td>
<td>2.816</td>
<td>2.779</td>
<td>0.070</td>
<td>0.899</td>
<td>0.181</td>
<td>0.110</td>
</tr>
<tr>
<td>C22:3 ω3</td>
<td>9.927</td>
<td>8.553</td>
<td>0.159</td>
<td>4.418</td>
<td>0.211</td>
<td>0.150</td>
</tr>
<tr>
<td>Total</td>
<td>21.520</td>
<td>32.585</td>
<td>4.558</td>
<td>22.373</td>
<td>6.990</td>
<td>6.219</td>
</tr>
<tr>
<td>Unknown</td>
<td>3.946</td>
<td>14.458</td>
<td>34.077</td>
<td>5.334</td>
<td>8.153</td>
<td>19.543</td>
</tr>
<tr>
<td>TUFA/TSFA</td>
<td>1.953</td>
<td>1.993</td>
<td>1.351</td>
<td>1.286</td>
<td>1.180</td>
<td>0.698</td>
</tr>
<tr>
<td>TPEA/TMEA</td>
<td>0.601</td>
<td>1.336</td>
<td>0.137</td>
<td>0.725</td>
<td>0.164</td>
<td>0.231</td>
</tr>
<tr>
<td>ω3-HUFA(%)</td>
<td>16.179</td>
<td>16.916</td>
<td>0.292</td>
<td>8.439</td>
<td>2.089</td>
<td>2.799</td>
</tr>
<tr>
<td>Σω3/Σω6</td>
<td>3.634</td>
<td>1.080</td>
<td>0.256</td>
<td>0.606</td>
<td>0.426</td>
<td>0.814</td>
</tr>
</tbody>
</table>

* 1)~5): Refer to Table 4

% 2.839%, C22:6酸(3.908%, 11.486%)이었다.

발장어의 경우, 총성분의 산소는 큰 차이가 없었지만, 발장어의 경우는 발장어의 혈액 비합당 0.051, C18:2酸, C20:4酸 및 C22:6酸의 산소는 하류 높은 반면 C18:2酸의 산소는 하류 높은 것이 특징적이었다.

한편 발장어의 불활성(TUFA/TSFA)은 천연산과

<table>
<thead>
<tr>
<th>산소(%)</th>
<th>12.286%</th>
<th>3.555%</th>
<th>9.825%</th>
</tr>
</thead>
<tbody>
<tr>
<td>산소(%)</td>
<td>9.825%</td>
<td>3.555%</td>
<td>12.286%</td>
</tr>
</tbody>
</table>

이러한 이론은 본 연구에서 보고한 가동률의 경우와 거의 동일한 경향을 나타내고 있었다.

또한, 9.825% 채 식이 축성분 (ω3 HUFA)은 천연산의 10.010%이거나, 이는 정량(3.908%)보다 2배 이상 높았는데, 이는 시도(6)에서 보고한 가동률의 경우와는 반대되는 결과를 나타내고 있었다. 이러한 차이는 체질 구성과 체질 구성의 관계로 해석되었다. 또한, 철강의 경우, 총성분의 산소(ω3 HUFA)는 천연산의 26.279%와 반면, 이 논문에서는 3.371%로, 평균에서 0.01835%가 되어, 총성분의 산소가 높은 것이 특징적이었을 수 있는 것으로 9.825% 채 식이 축성분(ω3 HUFA)의 내장적
部(20.342%)가 可食部(5.662%)보다 3배 이상 높았다.

한편 養殖의 不飽和度(TUFA/TSFA)는 天然産(1.963~1.993%)이 養殖(1.285~1.351%)보다 높았는데, 이는 앞서 前報9에서 보고한 가물치의 같은 경향을 나타내고 있음을 알 수 있었다. 必須脂肪酸含量(TFAE)도 天然産(4.618~12.979%)이 養殖(3.592~11.895%)보다 약간 높았는데, 이것이 또한 前報9의 가물치 및 養殖의 中性脂質의 경우와 거의 유사한 경향을 알 수 있었다. 또한 ω3不飽和脂肪酸 含量(ω3 HUFA)도 中性脂質 및 前報9의 가물치의 마찬가지로 天然産(16.179~16.916%)이 養殖(9.292~8.439%)보다 월트 낮음을 알 수 있었다.

한편 養殖의 경우, 不飽和度(TUFA/TSFA)나 必須脂肪酸 含量(TFAE)이 中性脂質과는 역대로 養殖이 보다 낮았으며, 또 ω3不飽和脂肪酸 含量(ω3 HUFA)도 中性脂質과는 역대로 養殖 보다 현저히 낮았다.

4. 養殖 養殖과 飼料의 脂肪酸 構成 比較

실제로 養殖에 있어서 飼料의 構成은 養殖魚의 成長에 큰 影響을 미치고 있는 것임이 測定이다. 養殖 養殖의 飼料에 대한 研究로서 Takeda 등9은 養殖의 飼料脂質의 同定에 대한 研究에서 아미노酸 含量이 가장 多く 惑を, 核酸 含量이 惑を 거의 없다고 報告하였다. 또한 10으로 養殖魚의 必須脂肪酸 含量 研究에서 必須脂肪酸으로서 C18:2 ω6가 C18:2 ω6보다 養殖의 成長率에 더 多く 多く의 이의 또한 C18:3 ω6과 C18:3 ω3의 惡影響으로 나타나다고 報告한 바 있다.

Table 6은 養殖 養殖의 構成脂肪酸(A)과 飼料用脂質의 構成脂肪酸(B)의 A/B를 나타낸 것이다. 飼料의 構成脂肪酸(B)에 대한 養殖 養殖의 構成脂肪酸(A)의 A/B는 養殖(A)의 構成脂肪酸(B)의 A/B는 養殖(A)의 構成脂肪酸(B)의 A/B는 polyene酸(0.47)이 가장 많았는데, 이는 前報9의 가물치의 monoene酸과 polyene酸의 比와는 상당한 差異가 있음을 알 수 있었다. 이러한 事実은 가물치의 飼料が 主要 水産魚의 養殖을 사용하기 때문에 나타나는 差異로 사료된다. 또 가물치의 경우 A/B가 1.48인데 반해 養殖는 0.47로서 polyene酸의 含量이 적은 양을 알 수 있었다.

Table 6. Comparison between fatty acid compositions of cultured eel and their diet

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Cultured(A)</th>
<th>Diet(B)</th>
<th>A/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12:0</td>
<td>0.303</td>
<td>0.329</td>
<td>0.92</td>
</tr>
<tr>
<td>C13:0</td>
<td>0.101</td>
<td>0.712</td>
<td>0.14</td>
</tr>
<tr>
<td>C14:0</td>
<td>2.147</td>
<td>2.210</td>
<td>0.97</td>
</tr>
<tr>
<td>C15:0</td>
<td>0.164</td>
<td>0.199</td>
<td>0.82</td>
</tr>
<tr>
<td>C16:0</td>
<td>21.353</td>
<td>16.871</td>
<td>1.27</td>
</tr>
<tr>
<td>C17:0</td>
<td>0.523</td>
<td>1.052</td>
<td>0.49</td>
</tr>
<tr>
<td>C18:0</td>
<td>7.333</td>
<td>4.373</td>
<td>1.68</td>
</tr>
<tr>
<td>C20:0</td>
<td>0.675</td>
<td>1.832</td>
<td>0.37</td>
</tr>
<tr>
<td>Total</td>
<td>32.599</td>
<td>27.578</td>
<td>1.18</td>
</tr>
<tr>
<td>C14:1 ω5</td>
<td>0.130</td>
<td>trace</td>
<td>-</td>
</tr>
<tr>
<td>C16:1 ω7</td>
<td>5.140</td>
<td>3.842</td>
<td>1.34</td>
</tr>
<tr>
<td>C18:1 ω9</td>
<td>32.323</td>
<td>21.893</td>
<td>1.48</td>
</tr>
<tr>
<td>C20:1 ω9</td>
<td>2.797</td>
<td>7.708</td>
<td>0.36</td>
</tr>
<tr>
<td>C22:1 ω9</td>
<td>0.691</td>
<td>6.499</td>
<td>0.11</td>
</tr>
<tr>
<td>Total</td>
<td>41.030</td>
<td>39.942</td>
<td>1.03</td>
</tr>
</tbody>
</table>

ω3가 C18:2 ω6보다 養殖의 成長率에 더 多く의 이의 또한 C18:3 ω6과 C18:2 ω3의 惡影響으로 C18:3 ω3의 惡影響으로 나타나다고 報告한 바 있다.
淡水魚의 脂質에 관한 研究

일본어로 작성된 논문의 일부 내용입니다. 내용은 다음과 같습니다:

要 約

養殖 餌が魚の脂質成分面에서 評価하기 위하여 天然及び養殖 餌の脂質 成分 및 이들 脂質의 濃縮脂肪酸 分析・比較하였고, 餌魚の脂質成分面으로한 차이가 있다. 또한 餌魚の脂質及 煮物脂質酸 分析・比較한 결과는 다음과 같다.

1. 煮物脂質 含量은 餌の脂質が 天然 餌보다약간 높은 반면, 煮物脂質은 2배 정도 높았다. 餌魚에 餌が 餌が 可食部(27.15-29.70 %)에 내지外(5.10-5.86%)보다 적혈 높았으며, 餌어는 거의 비슷하였다.

2. 天然 및 餌の脂質及 餌の脂質 成分은 거의 비슷한 値を 나타냈다. 즉 中性脂質이 가장 많고, 脂肪質, 煮物脂質이 적었다. 餌魚의 餌가 可食部 27.15-29.70%에 내지外5.10-5.86%보다 적혈 높았으며, 餌어는 거의 비슷하였다.

4. 中性脂質의 不飽和度(TUFA/TSFA)는 天然 및 餌の脂質及 餌の脂質 사이에는 差異이 거의 없었지만, 煮物脂質의 경우는 天然 餌가 餌의 脂質及 脂質이 높았다. 可食部의 必須脂肪酸 含量은 中性脂質이 天然 餌가 餌에서 보다 높았으며, 餌의 餌가 餌의 含量은 3배 이상 높았으며, 그 높은 餌의 경우는 必須脂肪酸 含量에 큰 差異가 있었다.

5. 可食部의 ω3 高度不飽和脂肪酸 含量은 中性脂質이 天然 餌가 餌의 경우보다 2.0-2.5배 정도 높았으며, 煮物脂質의 경우는 天然 餌가 餌의 含量보다 높았다.

6. 餌魚の脂質酸(B)에 대한 餌의脂質酸 (A)의 比(A/B)를 比較하여 보나linoleic acid (C18:2 ω6), linolenic acid (C18:3 ω3) 등의 必須脂肪酸 및 eicosapentaenoic acid (C20:5 ω3), docosahexaenoic acid (C22:6 ω3)의 ω3 高度不飽和脂肪酸의 A/B가 0.23-0.48로 아주 낮아, 이는 煮物脂質의 polynone 酸의 生合成 및 脂質成長에 크게 差異이 것으로 판단되었다.

感謝

本 實驗의 分析用材料及 餌魚を 供給해 주신 本 大学 金炳浩 教授님에 感謝의 意を 表하고, 實験 도중의 도움을 주신 채今回の 문의, 手数, 막바지의 感謝의 意を 表한다.

文献

2. 卢在一・崔鉉浩・卞在亨・崔康植. 1984. 淡水魚の 脂質에 관한 研究. 2. 部位別部门脂質成分의 分布. 韓水誌 17(5), 405-413.
3. 崔鉉浩・盧在一・卞在亨. 1984. 淡水魚の 脂質에 관한 研究. 3. 部位別脂質成分의 分布. 韓水誌 17(6), 477-484.
5. 崔鉉浩・盧在一・卞大錫・卞在亨. 1985. 淡水魚의 脂質에 관한 研究. 5. 部位별脂質成分의 分布. 韓水誌 18(2), 149-156.
7. 河鉉錫・鄭泰泰・梁敬錫. 1976. 淡水魚의 脂質에

