Antimicrobial and Antioxidant Activity of Grapefruit and Seed Extract on Fishery Products

Sung-Hwan CHO, Il-Won SEO*, Jong-Duck CHOI** and In-Saeng JOO

Department of Food Technology, Gyeongsang National University, Chinju, 660-330, Korea
*ABCON CHEMIE Co., Ltd., Yongdengpo-gu, 150-010, Seoul
**National Tongyoung Fisheries Technical College, Chungmu, 650-160, Korea

The antimicrobial and antioxidant activities of grapefruit seed extract (GFSE), which was extracted with glycerine in the special schematic extraction apparatus, were investigated for handling and processing of fishery products. The effectivity of GFSE has been tried on sardine, mackerel and shrimp divided into six lots for each fishery product: control (no treatment) and five GFSE-treated samples.

Samples were inoculated with *Salmonella typhi*, incubated for 24hrs at 30°C in dextrose-trypotone broth medium and prepared for microbiological & chemical analysis and organoleptic assessment.

The bacteriological analytical results with GFSE (250ppm) showed the reduction of $1.8 \times 10^6 \rightarrow 2.0 \times 10^3$, $1.9 \times 10^6 \rightarrow 1.8 \times 10^6$ and $1.6 \times 10^6 \rightarrow 2.7 \times 10^3$ in total bacterial count for sardine, mackerel and shrimp, respectively. The test results with GFSE (500ppm) showed a 100% reduction of bacterial mackerel treated with GFSE (500ppm) was reduced to 1.1×10^4 and 9.0×10^3 respectively.

Antioxidant effect of treatment with GFSE at 500ppm level for three products was significant. LSD test results on organoleptic parameter for the samples treated with various showed a significant influence on the appearance, odor and texture in which at concentration 500ppm level give the excellent scours compared to each control.

서 론

오늘날 부패성 및 병원성생물의 오염에 따른 부
패 또는 증식현상은 의약분야에서 뿐만 아니라 축
산의학, 농작물 및 수산물저장산업 등 왕범위한 영
역에서 당면하고 있는 심각한 문제중의 하나이다.
따라서, 각종 부패성 및 병원성 미생물에 대한 강
력한 살균력과 동시에 안전성을 가진 소독제의 개
발이 진행되어 왔다. 그러나 불행하게도 현재까지
부패성 및 병원성 미생물의 증식을 억제하려는 의
도하에서 사용되고 있는 대부분의 화학방부제는
안전한 정가량 범위내에서는 효과가 적고, 처리효
과가 있는 농도수준에서는 독성을 일으킬 가능성이
많아주고 있다.

이러한 점을 고려하여 불패, 이상적인 소독제환
미생물의 오염방지나 살균효과가 요구되는 여러가
지 광범위한 제품이나 분야에서의 처리효과와 아
울러, 무독성 및 안전성이 확실히 입증될 수 있어야
한국인의 위에서 친연추출물을 대상으로 연구가 진행되고 있는데 그중 하나가 *Grapefruit* 종자추출물(이하 GFSE)이다.

GFSE는 강력한 살균력을 가지며(Slavik, 1988) 항생효과 및 침투효과, 독물에 대한 항충효과, 박테리아의 항균력 증가 등 살균소독제로서의 구비조건을 갖추고 더욱 높은 효력이 나타나(Barrit, 1982), 감귤과유의 종자추출물로부터 추출조제한 석류성 천연살균소독제로서 양호한 작용(Bariry, 1981) 비균성성을 보이며, 부식성이 없으며, 무색무취의 천연유기 혼합물이고, 사람과 동물에게 전혀 해를 가하지 않으며, 환경오염의 원인임이 되지 않다는(Bariry, 1985).

또한, GFSE는 다양한 천연 tocopherol을 함유하고 있어 농산물의 저장중 임의할 수 있는 자동화학기방리 및 침투병상태를 방지하고 품질변화상태의 도출을 억제하여 수산물의 감염합한 험, 식재, 식물, 보호, 유지하여 수산물의 변성방지기능을 증대시킬 수 있을 것으로 기대된다. 따라서, 본 연구에서는 저란트리에 억화되고 있는 행정, 고등어, 새우등 수산물을 대상으로 GFSE처리에 의한 항생균성 및 항산화성 효과를 검토하여 다음의 결과를 얻었기에 이에 보고하고자 한다.

실험 및 방법

1. *Grapefruit* 종자추출물의 조제

브라질산 *Grapefruit*를 구입하여 그 과육부를 제거하고 분리한 종자물질을 수거하여 물로 세척한 다음, 적외선 장치로 장치하여 있는 60℃~70℃의 건조기에서 30~60분 동안 Drum-drying을 행하여 건조된 *Grapefruit*의 종자를 5℃ 이하의 온도가 유지되는 저온실에서 특성화된 Milling system으로 80~320mesh 크기로 분쇄하여 건조 분말종자 20% 와 추출액에 glycerin 80%의 증하비율로 혼합한 후, 30℃로 유지되는 추출장치에서 48시간동안 연속 추출하고 증분공리스(GFSE(Grapefruit Seed Extract)을 수거하였다. 이와 같이 추출조제한 종자 추출물 300g에 부동강계 및 추출조제한 산성화물 목적으로 propylene glycol 300g 및 lactic acid 60g을 교반용액에 넣고 혼합반응하여 균질한 용액을 만든 다음 다시 300g의 propylene glycol 및 GFSE 을 교반용액에 첨가하고 교반, 고정환공학을 과정을 3번 더 반복한 다음 균질한 용액을 얻어질 때까지 조절본 혼합물을 50~80rpm의 느린 속도로 10분 동안 계속하여 교반하고 사용목적이에 알맞도록 2차 증류수로 화학하여 얻은 농도의 GFSE 용액을 실험용 시료용액으로 사용하였다(조 등, 1990).

2. 수산물에 대한 항균력 및 항산화성 시험

본 실험에 사용한 수산물 시료는 북태평양 연안에서 어획하여 동결염제 유통된 정어리, 고등어 새우 등을 부산공동어시장에서 구입하여 사용하였으며 항균력 시험구조는 보고서를 가지고 있으며 단백질 분해효과가 강하며 염해성 해양에서 저수 존출되어 문제가 되고 있는 *Salmonella typhi*를 사용하였다.

항균력 시험은 구입한 수산물 구입부를 어육 미생물로 갈아 젖은 구조를 고르게 분산시키 다음 병균한 polyethylene bag에 넣어 5℃에서 5일간 비양하며 항균력 실험은 구입한 수산물 시료 100g에 시험 균주(dextrose-tryptone broth에서 24시간 배양한 것)를 접종시킨 다음 GFSE 화학용액(0.1, 100, 250, 500, 750, 1,000ppm: 병균수로 화학을 오염중량의 2배가 되도록 가하여 어육 미생물의 접종 균주를 고르게 분산시킨 후 병균한 polyethylene bag에 넣어 5℃에서 5일간 배양하면서 생균수의 변화와 관찰을 행하였다.

한편 GFSE를 처리한 수산물의 texture 변화를 실험하기 위하여 박 등(1985)의 방법에 따라 정어리·고등어의 어육을 제조하여 상기한 GFSE 화학용액에 첨가하고 시험구조를 접종하여 5℃에서 7일간 보관하면서 texture의 변화를 측정하였다.

GFSE의 항산화적 실험은 Folch 등(1957)의 방법에 따라 제조된 어유를 대조로 하였다. 즉, 수산물 전체를 마쇄한 후, 약 4배량의 Chloroform Methanol 혼합용액(2:1, v/v)을 가하고 blending하여 지질을 추출하였다. 추출·조제된 시료유 GFSE를 각 수산물 증량의 0~1,000ppm 농도로 처리하여 48시간 동안 30℃의 환경기에서 저장하여 두고 30일 동안 경시적으로 과산화물의 측정하였다.

3. 분석방법

1) 생균수 측정

정어리, 고등어 및 새우 등의 수산물시료에 GFSE를 0, 100, 250, 500, 750 및 1,000ppm 농도로 처리하여 시험구조를 접종하고 5일간 정온기에서 배양한 후, 시료용액을 첨가하여 Dextrose-Tryptophan Agar 배지에 접종하고 30℃에서 24시간 배양하여 각 수산물별 및 각 처리농도별 시험구조를 포함한 총생균수를 측정하였다.

2) 과산화물의 측정

시료유의 과산화물치는 AOAC법(1980)에 의하여

290
수산물에 대한 Grapefruit 종자가추출물의 항균 및 항산화효과

측정하였으며 meg/kg으로 표시하였다.

3) Texture측정

Instron texturemeter의 측정조건은 Table 1에 나타내었으며, 이로부터 얻어지는 force-deformation 곡선으로부터 해당면적을 planimeter로 측정하였다. Hardness(경도)는 시료를 정해진 가압기를 가압하는데 필요한 제1변형곡선의 최고점의 높이(kg)로 나타내었으며(Bourne, 1968), cohesiveness는 제1변형곡선의 면적에 대한 제2변형 곡선의 면적비로 계산하였다(Kapsalis 등, 1970). Elasticity(탄성)는 제2변형 곡선의 개시점에서부터 최고점 까지를 거리로 나타내었고(Mohsenin, 1970), gumminess(점착성)는 hardness와 cohesiveness의 곱으로, chewiness(저작성)는 elasticity와 gumminess의 곱으로 나타내었다(Breene, 1975).

Table 1. Conditions employed for texture profiles using the Instron texturemeter

<table>
<thead>
<tr>
<th>Testing instrument</th>
<th>Instron model 1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>2×2×2(cm)</td>
</tr>
<tr>
<td>Ratio of deformation</td>
<td>70%</td>
</tr>
<tr>
<td>Cross head speed</td>
<td>50 mm/min</td>
</tr>
<tr>
<td>Chart speed</td>
<td>50 mm/min</td>
</tr>
<tr>
<td>Number of bite</td>
<td>2</td>
</tr>
<tr>
<td>Area compensation</td>
<td>400</td>
</tr>
<tr>
<td>Weight of load cell</td>
<td>5 kg</td>
</tr>
</tbody>
</table>

4) 관능검사

GFSE를 처리하여 polyethylene bag에 넣어 5℃에서 5일간 저장한 수산물에 대하여 10명의 훈련된 관능검사위원에 의하여 기호적도법(Hedonic test)으로 샀과 향기반으로 관능검사를 실시하였다. 이때 사용한 기호적도는 다음과 같다. 최고로 싫다(dislike extremely) 1점 대단히 싫다(dislike very much) 2점 보통으로 싫다(dislike moderately) 3점 약간 싫다(dislike slightly) 4점 좋지도 싫지도 않다(neither like nor dislike) 5점 약간 좋아하다(like slightly) 6점 보통으로 좋아하다(like moderately) 7점 대단히 좋아하다(like very much) 8점 최고로 좋아하다(very extremely) 9점

이 평가기준에 의하여 얻어진 결과를 최소 유의 차 검정법(LSD test: Least Significant Difference test)에 의하여 통계처리하였다(김 등, 1987).

결과 및 고찰

1. Grapefruit 종자추출물의 물리화학적 특성

일정한 연속추출과정과 장치에 의하여 추출. 조제된 GFSE는 페.arch 및 돌도를 액체물질로서 약간 섞어져 있거나, 페.arch의 산성용액으로 물, 알코, 유기산 등에 잘 용해되고 582nm에서 최고흡광도를 보였다.

Perkin-Elmer Model 1330 Infrared Spectrophotometer를 이용하여 400~4,000cm-1 Frequency에서 얻어진 Infrared spectrum 결과, 1,050cm-1에서 carboxyl 및 1활 amine의 C-N, 1,250cm-1에서 carboxyl, 1,300cm-1에서 carboxylic acids의 OH, 1,370cm-1에서 CH3의 CH, 1,470cm-1에서 CH2의 CH, 1,580 및 1,610cm-1에서 방향족화합물의 C=C 또는 carboxylic acid의 OH, 1,700cm-1에서 unsaturated ester의 C=O, 2,880~2, 980cm-1에서 methyl groups의 CH, 3,000cm-1에서 trans C=C의 CH, 3,050cm-1 및 3,080cm-1에서 terminal unsaturated carbon의 CH, 3,200~3,500cm-1에서 알코산의 OH, 3,600cm-1에서 carboxylic acid의 OH와 같은 functional group의 존재를 확인할 수 있었다(Fig. 1).

한편, GFSE의 일반성분 분석 결과, ascorbic acid

![Fig. 1. The infrared spectral interpretation of grapefruit seed extract.](image-url)
조성환・서원원・최종혁・주인성

16.5%, 조단백질 2.0%, 지방 0.4%, tocopherol 1.0%
%, 무경소추출물 39.6%, 무기질 0.5%, 조성유 0.4
%, glycerine 30.0% 및 수분 10.0%의 조성비를 나
타내었고, IR spectrum에서 확인된 functional
group들을 각 조성화합물의 functional group과 비
교・검토하여 일치함을 알 수 있었다.

2. GFSE의 살균효과
수산시장에서 구입한 수산물에 시행균주인Sal-
monella typhi를 접종하고 GFSE를 농도별로 처리
하여 5℃에서 5일간 저장하면서 각 접종 혼합물로
부터 수산물뿐만 GFSE 처리농도별 접종된 균주의
균수를 측정한 결과는 Table 2와 같다.

GFSE를 처리하지 않은 대조구의 경우, 5일 후 총
균수가 정어리 1.3배, 새우 1.8배 정도의 증가한 반
면, 100ppm의 GFSE 용액을 처리하여 정어리는 1.8
×10^6에서 3.0×10^5으로 고운데, 1.9×10^6에서 4.8
×10^5으로 새우는 1.6×10^6에서 8.0×10^5으로 감소하
여 GFSE의 투입한 살균효과를 관찰할 수 있었다.

250ppm으로 적시한 GFSE 용액을 처리한 실험결과
는 총균수가 각각 정어리 2.0×10^6, 고운데 1.8×10^6
, 새우 2.7×10^5으로 감소하였으며 새우는 500
ppm, 정어리와 고운데의 경우, 750ppm 처리농도에
서 100% 살균효과를 볼 수 있었다.

이와 같은 결과는 증류조 또는 2.5% 납액에E.
coli, Salmonella typhi 및 Staphylococcus aureus를 접
종하고 (10 cell/ml) GFSE 용액(0.125 oz/gallon)을
처리하여 10～15분만에 완전 사멸시켰다는 보고
(Wyatt, 1983)와 상응하는 결과이며, 조 등(1990)의
독소생성성 균종이 생육역계에 관한 연구결과에
서도 750ppm 농도에서 완전한 생육제제효과를 볼 수
있다는 보고와 잘 일치하고 있다.

Juven 등(1988)은 기계적처리로 빠를 빠낸 질면
조고기의 Campylobacter jejuni를 접종하고(10^6 co-
lony-forming units, CFU/g) 고기 100g당 65mg의
ascorbic acid를 참가한 후 5℃에서 4주 동안 저장
하여 생균수가 10^6 CFU/g로 감소하고 7주 후에는
전체 검출되지 않았다고 보고한 바 있는데, 본 설
험에 사용한 GFSE에도 16.5%에 해당하는 ascorbic
acid가 함유되어 있다는 점을 고려할 때 GFSE의 살
균효과는 ascorbic acid의 환원작용 결과 생긴 세
포독성 물질인 hydroxy radical 등에 기인할 수 있
는 것으로 검토될 수 있다(Winterboum, 1979). 이
의례, GFSE처리 후 저온 또는 500ppm 이하의 농
도에서도 균의 발육제제효과를 볼 수 있을 것으로
생각된다.

3. 과산화물
정어리, 고운데 및 새우에서 추출한 지질을 30℃에
서 30일간 저장하면서 측정한 과산화물의변
화는 각각 Fig. 2, Fig. 3 및 Fig. 4와 같다. 시간이
경과함에 따라 GFSE를 처리하지 않은 대조군에
GFSE처리시험군보다 빨리 증가하였다. Fig. 2에
서 보는 바와 같이 정어리추출 지질의 경우 대조
군은 지질산해의 유도기가 빨라 저장 10일정 광산
화물가 305mg/kg로 급격하게 증가하였으며, 2
일에 426, 30일에는 490으로 계속 증가하는 경향을
나타내었다. 이에 반해 GFSE를 참가한 시험군은2
10일정까지 적은 증가폭을 보였으며 GFSE의 참가농도가 증가할수록 과산화물의 각
가속성이 완만해지고 GFSE 용액의 처리농도가
750ppm이 되었을 때 저장 30일간 과산화물의 변
화가 동일하게 30일후 과산화물이 97mg/kg으로
대조군의 1/5에 지나지 않는 섞기도 나타나었다.
고운데의 경우, Fig. 3에서 보는 바와 같이 대조
군은 유도기가 대략히 떨어져 10일경 과산화물가

Table 2. Effect of grapefruit seed extract on the antibacterial activity against Salmonella typhi inoculated on sardine mackerel and shrimp by the treated concentration stored for 5 days at 5℃
(Total counts/gm)

<table>
<thead>
<tr>
<th>Treated concentration</th>
<th>Sample</th>
<th>Sardine</th>
<th>Mackerel</th>
<th>Shrimp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Days</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Untreated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.10^6</td>
<td>2.4×10^6</td>
<td>1.8×10^6</td>
<td>2.1×10^6</td>
<td>1.4×10^6</td>
</tr>
<tr>
<td>100ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8×10^6</td>
<td>3.0×10^4</td>
<td>1.9×10^6</td>
<td>4.8×10^4</td>
<td>1.5×10^6</td>
</tr>
<tr>
<td>250ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8×10^5</td>
<td>2.0×10^4</td>
<td>1.8×10^5</td>
<td>1.4×10^4</td>
<td>2.7×10^3</td>
</tr>
<tr>
<td>500ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8×10^5</td>
<td>1.0×10^4</td>
<td>1.8×10^5</td>
<td>9.0×10^3</td>
<td>1.3×10^6</td>
</tr>
<tr>
<td>750ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7×10^5</td>
<td>1.0×10^4</td>
<td>1.8×10^5</td>
<td>0</td>
<td>1.2×10^6</td>
</tr>
<tr>
<td>1,000ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6×10^6</td>
<td>0</td>
<td>1.6×10^6</td>
<td>0</td>
<td>1.0×10^5</td>
</tr>
</tbody>
</table>

292
수산물에 대한 Grapefruit 증가추출물의 항균 및 항산화효과

360meq/kg로서 지질의 산화가 급격하게 진행된 때
문이며 20일정 최고치를 보이다가 이후 과산화물
의 분해가 예상되면서 다소 감소하는 경향을 보였
다. 한편, GFSE용액을 100ppm 및 250ppm의 농도
로 투입한 실험군의 대조군보다는 낮은 증가율을
보였으나 저장 30일 후 300meq/kg 이상의 높은 과
산화물가를 보인 반면 500ppm 또는 750ppm의 농
도로 GFSE를 처리한 실험군들은 두껍한 항산화효
과를 보이며 30일 경과 후 각각 148 및 105로서 비교
적 낮은 과산화물가를 나타내었다.

세우로부터 추출한 지질은 고등어 및 고등어 추
출지질에 비하여 지질의 산화 정도가 적은 것으로
나타났고 GFSE용액치가 의해 유래한 산화
제제 효과를 볼 수 있었으며, GFSE농도가 증가함수록
낮은 과산화물가를 보이며 750ppm 실험군은 30일
저장하는 동안 200meq/kg에서 280meq/kg으로 과산화
물가가 증가하여 지질의 산화가 크게 억제되었음을
알 수 있었다.

이와 같은 GFSE의 항산화효과는 GFSE 구성성
분인 tocopherol, ascorbic acid 및 기타 GFSE 함유
항산화 성분에서 기인하는 것으로 생각되며, 산해
로 인한 독성물질의 생성을 방지할 뿐만 아니라
영양소 파괴를 최소화하고 보존성분을 보존하여
식품원료의 기호성 및 기능성을 향상시킬 수 있음을
한다(Slavik, 1988).

4. Texture

수산시장에서 구입한 고등어와 고등어를 원료로
하여 어묵을 제조하고, GFSE용액을 농도별로 처리
한 실험군에 실험군의 Salmonella typhi를 접종하
여 GFSE용액을 처리하지 않은 대조군과 함께 5℃
에서 7일간 저장하면서 측정한 texture의 변화는
Table 3 및 Table 4와 같다.

Table 3은 고등어 어묵의 texture 변화를 나타낸 것으로 전반적으로 밀때, 저장기간이 길어질수록
texture는 감소하였으며, GFSE용액의 농도가 클수
록 감소율이 줄어들었다.

Fig. 2. Changes in peroxide value of the lipids extracted from sardine during storage at 30℃(unit: meq/kg).

Fig. 3. Changes in peroxide value of the lipids extracted from mackerel during storage at 30℃(unit: meq/kg).

Fig. 4. Changes in peroxide value of the lipids extracted from shrimp during storage at 30℃(unit: meq/kg).
GFSE를 처리하지 않은 대조군의 저장 7일 동안 경도 (hardness) 68.1%, 탄성 (elasticity) 31.8%, 응집력 (cohesiveness) 55%, 저작성 (chewiness) 90.3%가 감소한 반면, GFSE처리시험이는 경도가 100ppm 시험군 11.3%, 250ppm 시험군 10.1%, 500ppm 시험군 6.4%로, 단성은 각각 11.4%, 5.7%, 2.3%가 응집력은 각각 27.8%, 15.4%, 7.5%, 저작성은 각각 50.7%, 27.8%, 15.4%가 감소함으로써 대조군에 비하여 먹기시험성을 유지하는 데 훌륭한 효과적 인 것으로 판단할 수 있다. 한편, 고등어 여두의 경우 (Table 4)는 초기 texture의 경도는 경어 여두 역시 여두과 약간의 차이는 있었으나 변화양상은 거의 비슷한 경향을 나타내었다.
즉, 고등어의 경우 GFSE를 처리하지 않은 대조

<table>
<thead>
<tr>
<th>Storage time after</th>
<th>Textural properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFSE treatment</td>
<td>Hardness (kg)</td>
</tr>
<tr>
<td>Control</td>
<td>0 days</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td>100ppm</td>
<td>3 days</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td>250ppm</td>
<td>3 days</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td>500ppm</td>
<td>3 days</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Storage time after</th>
<th>Textural properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFSE treatment</td>
<td>Hardness (kg)</td>
</tr>
<tr>
<td>Control</td>
<td>0 days</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td>100ppm</td>
<td>3 days</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td>250ppm</td>
<td>3 days</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td>500ppm</td>
<td>3 days</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>
구는 저장 7일 동안 경도 71.8%, 탄성 37.2%, 응집력 64.4%, 지속성 93.8%가 감소하여 정어리에 따른 다른 texture 특성이 낮은 것으로 나타났으며, GFSE 처리시험군은 경도가 100ppm, 시험군 38.6, 250ppm 시험군 28.2, 500ppm 시험군 19.4%, 탄성은 각각 15.1%, 8.14%, 7.0%, 응집력은 각각 40.0%, 26.7%, 11.1%, 지속성은 각각 68.8%, 51.7%, 33.3%가 감소함으로써 대조군에 비하여 개선된 여독성능을 유지할 수 있었다. 따라서, 원료별 여독에 처리된 GFSE용액의 농도와 저장기간을 고려함으로써 보다 나은 평질보존의 효과를 유도할 수 있을 것으로 생각된다.

5. 관능검사

수산물은 여려가지 농도의 GFSE 및 대조군으로 나누어 처리한 시료를 5℃, 5일간 보관 후 위관, 햄생, texture 및 채소 등을 종합적으로 고려한 organoleptic parameter의 LSD test 결과는 Table 5와 같다.

Table 5. Sensory evaluation data for sardine, mackerel and shrimp treated with the dilutions of grapefruit seed extract and stored for 7 days at 5℃

<table>
<thead>
<tr>
<th>Treated Dilution</th>
<th>Sardine</th>
<th>Mackerel</th>
<th>Shrimp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ppm</td>
<td>3.12</td>
<td>3.80</td>
<td>2.63</td>
</tr>
<tr>
<td>100</td>
<td>6.65</td>
<td>6.87</td>
<td>5.07</td>
</tr>
<tr>
<td>250</td>
<td>7.30</td>
<td>7.60</td>
<td>5.54</td>
</tr>
<tr>
<td>500</td>
<td>7.80</td>
<td>8.42</td>
<td>6.48</td>
</tr>
<tr>
<td>750</td>
<td>8.00</td>
<td>8.10</td>
<td>7.25</td>
</tr>
<tr>
<td>1,000</td>
<td>7.89</td>
<td>8.24</td>
<td>7.72</td>
</tr>
</tbody>
</table>

즉, 정어리와 고등어의 경우 전 GFSE처리시험군에서 각각 대조군 3.12 및 3.80에 비하여 유의성있는 차이를 보였으며 새로운 경우, 정어리나 고등어보다는 낮은 기호도 수준을 보이기는 했으나 GFSE처리시험군은 대조군 2.63에 비하여 유의성있는 차이를 나타내었다.

이상의 평가방법 및 평가결과를 고려하여 불쾌 수산물의 신선도를 유지하기 위하여 GFSE의 농도 및 처리기간에 대한 중 더 학문적인 기초연구가 진행됨으로써 수산물원료 향별 아니라 식품전반에서 그 작용 가능성을 확인할 수 있을 것으로 사료된다.

요 약

연속 추출장치를 이용하여 grapefruit 종자를 glycine으로 추출하고 농축, 조제한 grapefruit 종자 추출물(GFSE)의 항균 및 항산화성 효과를 검토하기 위하여 정어리, 고등어 및 새우와 같은 수산물을 재료로 하여 GFSE를 처리하지 않은 대조군과 GFSE용액(100, 250, 500, 750 및 1,000ppm)으로 처리한 시험군으로 나누어 Salmonella typhi를 접종하여 일정 온도에서 저장하면서 총균수, 과산화물기 및 texture의 변화를 측정하고 GFSE처리후 저장한 수산물을 대조군과의 임의적 비교로 관절검사 결과는 Table 5와 같다.

정어리와 고등어의 경우, 최초 군수는 1.9×10^5, 1.8×10^5이었는데 500ppm 농도 처리하여 5℃에서 5일 저장후 1.1×10^4, 9.0×10^4으로 감소되었고, 새우의 경우 군의 점검이 확인되지 않아 상당히 좋은 항균효과를 나타내었다.

그리고, 3종의 수산물 모두 GFSE처리용액이 대조 군에 비하여 유익적인 항산화효과가 있음을 나타내었으며, 500~750ppm 농도의 유액을 처리하여 30℃에서 30일간 저장한 수산료추출유의 과산화물가지는 정어리는 최고 28~45mesh/kg에서 92~143 mesh/kg(대조군, 49mesh/kg)로, 고등어는 64~75mesh/kg에서 98~137mesh/kg(대조군, 40mesh/kg)로, 새우는 12~20mesh/kg에서 21~32mesh/kg(대조군, 72mesh/kg)로 증가하여 두려운 산패 억제효과를 볼 수 있었다.

Texture도 저장기간이 경과함에 따라 감소하는 경향을 나타내었으나, 3종 수산물 모두 GFSE용액 처리시험군에서 감소율이 크게 낮아졌다. GFSE를 처리하여 0℃, 5일간 보관한 시험군과 대조군에 관한 관능검사 결과, GFSE를 처리하지 않은 대조군은 동일한 기호도를 보여준 반면, GFSE용액을 500ppm 이상의 농도로 처리한 시험군 모두가 높은 기호도의 관능검사 결과를 나타내었다.

참고 문헌

Breene, W. M. 1975. Application of texture profiles analysis to instrumental food texture evalua-
Grapefruit seed extract as a disinfection agent for domestic wastewater treatment plant effluents. Report submitted to Chemie Research & MFG Co., Inc. from & Wastewater Operations in Armadillo Environmental Services, FL, U. S. A.

J. Texture Study, 6, 53−82.

Grapefruit seed extract may be useful in preventing the growth of Penicillium islandicum in food and feed. Dunn, G. R. 1981. The acute oral toxicity, skin irritation and corrosivity and acute eye irritation studies of DF-100. Project No. 10623 prepared by Bioassay systems corporation.

Slavik, M. F. 1988. Effectiveness of Grapefruit seed extract in eliminating Salmonella typhimurium from chicken carcasses. The results of trials tested in the Agricultural Experiment Station, University of Arkansas.

1990년 6월 19일 접수
1990년 9월 21일 수리