SEA를 이용한 선박소음해석 시스템 개발(1)

강현주*, 김현철*, 김재성*, 한성용**, 이영철**

The Development of Shipboard Noise Analysis System using Statistical Energy Analysis(1)

by

Hyun J. Kang*, Hyun S. Kim*, Jae S. Kim*, Sung Y. Han** and Young C. Lee**

요 약

본 논문은 통계적에너지 해석법(SEA)을 이용하여 선박소음해석 프로그램을 개발하는 과정중에 얻어진 연구결과를 소개하였다. 주요 내용은 SEA를 이용한 실시간 소음해석 프로그램 NASS의 해석 모듈 개발과 검증, 그리고 선체구조 및 적실에 대한 모델링 기법이 제시되었다.

또한 NASS를 이용하여 실시간에 대한 공기음 및 고피음 예측을 수행하였으며 이를 실시간계측값과 비교 검토하였다. 비교 결과로부터 모델링 기법 및 방사효율 산정의 문제점을 발견할 수 있으면서, 상부갑판에서는 오차가 5 dB 이내였으며 특히 종래의 경험적인 방법으로서는 불가능했던 빈드벌경험의 임차등 공정적 결과를 얻을 수 있었다.

Abstract

In this paper, experiences obtained during the development of NASS(Noise Analysis of Shipboard using SEA) are described. The results are summarized as follows:

(1) The modelling techniques for ship structure and cabins are suggested.

(2) Structureborne and airborne noise for a real ship were measured at sea trial and predicted by NASS. The differences between the two values are acceptably small for the cabins located on higher decks, although problems related with modelling of lower decks and evaluation of radiation efficiency were found.

발표 : 1993년도 대한조선학회 총 개연구 발표회(93.4.17)
집필일자 : 1993년 5월 15일, 채집수일자: 1993년 8월 9일
* 정회원, 한국기계연구원.
** 정회원, 삼성중공업(주)
1. 서 언

당시에 소개된 방법은 과거 실적선의 제작지에 기초한
결합적 방법으로서 추정법과 차체의 격실화율로 인하여
최근에도 이와 유사한 형태의 경험이격의 소음매
방정식이 많이 사용되고 있다[2~4]. 경험이격은 유사
선박에 대해서는 실용적인 결과를 얻을 수 있으나 실
제 구조물의 영향을 고려할 수 없기 때문에 새로운 형
식의 선박 혹은 구조가 변경된 경우에는 도저히 많이
발생할 수 있다는 단점이 있다.

이러한 경험식의 단점을 보완하기 위하여 사용되는
방법 중 대표적인 이론적 방법으로서, SEA(Statisti-
cal Energy Analysis : SEA)를 들 수 있다. SEA에서는
시스템의 평균에너지가 형태별로 취해져 구조물
은 진동에너지들로, 또한 각각은 음계조직을 저장하는
시스템으로 취급하여 선박을 모델링한다. 이러한 이유
로 인하여 SEA를 적용할 경우, 고체응과 공기응성분
을 동시에 다룰 수 있다는 장점이 있다. 응용 분야에
있어서도 선박구조물은 물론 일반 구조물의 고주파수 진
동응응 문제에 평범위하게 응용될 수 있다.

본 논문은 선박소음해석을 위한 이론적 혈식수단의
개발을 목적으로 수행 중인 연구의 중간결과로서 통계
적 예측해석법(SEA)을 이용하여 선박소음해석 전
용 프로그램, NASS(Noise Analysis of Shipboard
using SEA)를 개발하는 과정중에 얻어진 연구결과를
소개하고 있다.

2. SEA 방정식

SEA의 정식화 과정[5~10]을 간략하게 소개하기
위하여, k개의 세부시스템으로 구성된 시스템에 대하
여 예외적 평형 방정식을 세우면 다음과 같이 정리된
다.

\[
P_{i,in} = \omega \left[\begin{array}{c} n_1 + \sum_{j=1}^{k} n_j \end{array} \right] E_i \quad \text{for} \quad i = 1, 2, 3, \ldots, k \quad (2.1)
\]

여기서 \(P_{i,in}, \omega, n_i, n_j, E_i \)은 각각 시스템 \(i \)에 대
한 입력파워, 해석파수, 구간의 중심주파수, 내부운
실계수, 결합값계수 및 에너지를 의미한다.

식(2.1)을 다시 형태로 표시하면

\[
\omega [C][E] = [P]
\]

\[
[C] = \begin{bmatrix} n_1 + \sum_{j=1}^{k} n_j & -n_{12} n_1 & \cdots & -n_{1k} n_1 \\ -n_{21} n_2 & n_2 + \sum_{j=1}^{k} n_j & \cdots & -n_{2k} n_2 \\ \vdots & \vdots & \ddots & \vdots \\ -n_{k1} n_k & \cdots & \cdots & n_k + \sum_{j=1}^{k} n_j \end{bmatrix}
\]

\[
[E] = \begin{bmatrix} E_1 / N_1 \\ E_2 / N_2 \\ \vdots \\ E_k / N_k \end{bmatrix}, \quad [P] = \begin{bmatrix} P_{1,in} \\ P_{2,in} \\ \vdots \\ P_{k,in} \end{bmatrix}
\]

와 같이된다. 여기서 \([C][P]\)는 각각 결합손실계수
행렬, 입력파워 행렬을 의미하고, \([E]\)는 시스템의 에
너지 행렬을 나타낸다.

따라서 구조물을 소음을로서 부터 \([C][P]\)를 얻는다
면 식(2.2)으로부터 각 세부 시스템의 에너지 \(E_i \) 를 구
하며, 이로부터 진동속도 또는 음압과 같은 물리량을
얻을 수 있다. 이때 물리량으로의 변환은 다음식을
이용한다.

\[
E_i = \langle P_i^2 \rangle V_i / (pc^2)
\]

\[
E_i = M_i \langle v_i^2 \rangle
\]

\[
\langle P_i^2 \rangle : \text{평균 강물 응답} \\
\langle v_i^2 \rangle : \text{평균 강물 속도} \\
V_i : \text{공간의 부피} \\
M_i : \text{판의 질량} \\
\rho : \text{매질}(공기)의 질량 \\
c : \text{음파의 속도}
\]

3. NASS 프로그램 개발

3.1 개요

NASS(Noise Analysis of Ship by SEA) 프로그
램은 선박소음해석 전용 프로그램으로서 사용된 계산
방식은 2장에서 기술한 SEA 방정식에 기초를 두고 있
으며 계산 호흡도는 Fig.3.1과 같다. 본 프로그램에서

Transactions of SNAK, Vol.31, No.1, February 1994
현재 채의 가능한 세부시스템 종류는 음장(공기로 이루어진 공간을 의미)과 판 시스템으로, 정의 가능한 Energy type은 응답 및 급등과 에너지에 한정되고 있다. 그러나, 앞으로 가능 확장 및 범용성을 대비하여 본 프로그램의 Library 화일에는 보다 다른 Energy type(In-plane wave)에 대한 합성도 포함하고 있다.

3.2 프로그램 검증
본 절에서는 개발된 NASS를 이용하여 실제 구조물의 소음에과 응향학 이론에 의한 해석값들을 서로 비교함으로써 NASS를 검증하기 위한 목적으로 시험 모델에 대한 해석을 수행하였다. 각 각의 시험모델들은 설계소음특성 과정 중에 중요한 요소가 되는 소음원실 소음해석(모델 A1), 고체응력 전달에 의한 소음해석(모델 A2), 및 급등응력전달에 의한 소음해석(모델 B)에 대한 정당적인 예가 될 수 있도록 선택하였다.

Fig. 3.3에 보인 계산모델[10]은 삼각형으로서 그 크기는 상자 각변의 길이가 4 m로 모두 동일하고, 두께는 5 mm로 된 철판상자이다. 모델은 두가지의 시험 모델 A는 단일 상자로 구성되어 있고, 모델 B는 3개의 연결된 상자로 구성되어 있다. 또한 계산의 정확성을 위한 가정으로서 각 관에 대한 평균음속을 0.1(모든 주파수 범위에서 동일)로 취하였다.

(1) 모델 A
Fig. 3.2 a)에 보인 모델로서, 시험 모델 번호 1-6까지는 한 시험상이며 7은 있는 시험시스템이다. 또한 이 모델은 입력파워의 형태에 따라서 편의상 A1 및 A2로 구분하였다.

모델 A1:
소음원실의 응답레벨 계산에 대한 예로서, 이 모델은 벽으로 이루어진 음장에서 응답특성(Sound Power)을 입력파워로 주입할 경우를 나타낸다. 이에 발생하는 소음레벨에 대한 이론식은 다음과 같이 주어진다.

\[L_p = L_w - 10 \log R + 6 \]
(3.1)

\[L_w = \text{응답 레벨}(\text{dB ref. 2}x10^{-6}N/m^2) \]
\[L_v = \text{응향 파워 레벨}(\text{dB ref. 10^{12} Watt}) \]
\[R = \text{설정수 (m^2)} \]
\[\bar{S} = \text{평균음속계수} \]
\[S = \text{실 전체 표면적 (m^2)} \]

입력파워로서 음장요소인 세부시스템 7에 응향파워의

Fig. 3.1 The flow chart of NASS

1 Watt(120 dB)의 도착음량(Pink Noise)을 가진 경우, NASS의 계산 결과와 (3.1)의 결과를 Fig. 3.3 a)의 상단에 보였으며 그 차이가 0.5 dB이내로서 거의 일치함을 알 수 있다. 이 결과로 부터 설계의 소음원실(예: 기관실, 기계실등)에 대하여 SEA법이 적용 가능한지 알 수 있다. 참고로 Fig. 3.3 a)의 하단은 소음 2차 고계수 즉, 응향파워(120 dB)로 인해 판에 유기되는 진동속도 레벨(Velocity Level, dB ref. 5×10^4 m/sec)을 보여주고 있다.
모델 A2:
비소음원실에서 고체음 전달에 의한 실내의 음압레벨 계산에 대한 예로서, 이 모델은 음장을 둘러싸고 있는 편들 중 하나의 편만이 진동할 때 이로 인한 방사음이 실내의 음압에 미치는 영향을 보여 주는 것으로서 이에 대한 이론식은 다음과 같다.

\[L_{Ri} = L_v + 10 \log \sigma_i + 10 \log \frac{\alpha_i}{R} + 6 \]
(3.2)

\[L_{Ri} \] : 편 \(i \)의 진동으로 인해 발생하는 음압레벨
\[L_v \] : 편 \(i \)의 진동속도레벨(dB ref. 5x10^-6 m/sec)
\[\sigma_i \] : 편 \(i \)의 방사효율
\[\alpha_i \] : 편 \(i \)의 면적(m²)

입력파워는 편 시스템 1만이 100 dB의 속도레벨로 진동할 때이며, 이 경우 NASS의 계산 결과와 식(3.2)의 결과를 Fig. 3.3 b)에 보였는데 두 값이 거의 일치하고 있음을 알 수 있다. 모델 A2의 계산 결과로 부터 실험의 일반적설의 소음전계에 SEA법이 적용 가능하다.

모델 B:
비소음원실에서 공기음 전달에 의한 실내의 음압레벨 계산에 대한 예로서, 이 모델은 두 음장이 판을 경계면으로 결합하고 있으며 한 음장에서 다른 음장으로 공기음 전달을 계산할 때 비공간모드의 영향[11] 즉 점점방법에 의한 영향을 보여준 것이다. 모델은 Fig. 3.2 b)에 도시하였으며, 시스템 번호 1 - 16까지 는 편이며 17, 18, 19는 음장으로 구성되어 있다. 소음원은 음장 17에 도색장음(Pink Noise)으로서 100 dB의 음압레벨을 가졌다.

이러한 경우의 모델링에 대한 예를 보이기 위한 것으로서, 모델 B의 음장 17, 18 및 두 음장 사이의 경계면 판 6 시스템에 대한 파워 효율도가 Fig. 3.4에 나타나 있다. 식(3.3)은 세 시스템에 대한 파워 평형 방정식을 표현하고 있는데 여기서 점점방법의 영향을 나타내는 항은 \(P_{17,18} \) 으로서 일반 점점방법의 영향을 감소시킬 수 있는 factor을 본 모델은 제공하고 있다.

Fig. 3.2 Test models for NASS

Fig. 3.3 Comparision of NASS and theoretical results
고려하지 않는다면 \(P_{17,18} = 0 \) 이 될 것이다.

\[
\begin{align*}
P_{17,18} &= P_{17,dis} + P_{17,6} + P_{12,18} \\
P_{6,dis} &= 0 = P_{6,dis} - P_{17,8} + P_{6,18} \\
P_{18,1,ij} &= \text{시스템 } j \text{에서 } i \text{로 전달되는 파워} \\
P_{1,dis} &= \text{시스템 } i \text{에서의 손실 파워}
\end{align*}
\]

(3.3)

단, \(P_{17,18} \)는 시스템에 대한 입력파워, \(P_{i,1,ij} \)는 시스템 \(i \)에서 \(j \)로 전달되는 파워, \(P_{1,dis} \)는 시스템 \(i \)에서의 손실 파워

NASS의 계산 결과를 Fig. 3.5에 보이고 있는데 그림에서 18(W), 19(W)와 18(W/O), 19(W/O)에 대한 의미는 질량 및 수직파의 영향을 고려 및 고려하지 않은 경우, 각각의 음압레벨을 나타낸다. 18(W)와 18 (W/O)의 비교로, 질량 및 수직파의 영향은 잘 알려진 바와 같이 주파수나 밸런스에서 크게, 주파수나 밸런스에서

는 영향이 없는 것으로 나타난다. 한편 음장 19에

서는 두 값의 차이가 거의 없다. 즉, 공기음 전달을 고

려할 때는 소음원과 인접한 작업자만 영향이 있고 그

외의 경우는 무시할 수 있다는 사실을 알 수 있다.

![Fig. 3.4 Block diagram of power flow for system 17, 6 and 18 in model B](image)

이와 같은 결과는 실전에서 저 주파수 성분이 문제

가 될 수 있는 E/R, Funnel등에 치밀한 적절을 해석

할 때에는 계산의 정확도 높이기 위하여 질량 및 수직파의

영향을 포함시키는 것이 바람직함을 알 수 있다.

4. 모델링 기법

4.1 개요

모델링 기법은 소음함식의 정확도를 높이는 여러 가지 원인 중에서 매우 중요한 요소라고 생각된다.

![Fig. 3.5 The influences of mass law for model B](image)

특히 SEA법의 경우는 FEM 등에 비해 부화적으로

모델링 기법에 대한 연구가 많고, 또한 섬유

구조(제작배치등)가 소음관절과 대칭이 보는 것은

이유기 때문에 입력공급 간소화 혹은 시스템 정의의

이용을 극복할 수 있는 모델링 기법의 확립이 철저

히 요구되고 있다.

4.2 소음원 모델링

SEA 모델의 입력파워는 구조를 또는 음장에 작용

하는 외부 기중원의 영향으로 인해 해당 시스템에

가해지는 파워를 공간, 시간과 해당주파수 구간에 대

하여 평균한 값이 되며 소음의 경우에 필요로 하는

입력파워는 다음과 같다.

(1) 음량 파워 레벨 (Sound Power Level)

공기음에 대한 소음원은 입력파워로서 완치적으로

음량파워 레벨이 요구되지만, 종종 한 소음원의 음

압레벨만을 알고 있는 경우도 있다. 이때, 적절의

응장 시스템에 가해지는 기중원은 음압레벨로 주어졌

을 경우에는 대상 시스템의 최종에너지(즉, SEA 방정

식의 해)로서 입력받으면 된다.

(2) 구조음 레벨 (Structureborne Noise Level)

구조음 레벨의 경우에도 공기음과 마찬가지로 완치

적으로 입력파워 레벨이 요구된다. 이를 구하기 위해

서는 장비하부에서 선택해 전달되는 기중원과 속도를

알아야 하는데 선택과 같은 복잡한 구조에 더욱 다양한

기중원이 동시에 존재하는 경우에, 장비의 독

성, 장비 하부구조에 따른 영향을 산정과 외로든

으로 구하기는 상당히 어렵다. 따라서, 음압레벨의 주

는 경우와 마찬가지로 입력파워 대신에 속도 혹은 가

속도레벨(대상 시스템의 최종에너지로서)로 입력하는

大韓造船学会論文集 第31卷 第1號 1994年 2月

4.3 설계구조의 모델링
전동에너지를 전달하는 세부시스템으로서 설계구조물들은 대부분 한 요소로 정의 되는 데, 입력 데이터에는 그 세부시스템의 물리적 특성치 및 톤수와 다른 세부시스템들의 결합형식이 정의 된다.

신파와 같은 구조물에서 결합형식을 정의하는 작업은 복잡성 및 다양성 때문에 상당한 시간과 집중이 요구되며 또한 물리적인 경계만으로 다른 세부시스템들과의 결합형식을 정의할 수 없는 경우도 있다.

이러한 문제에 대한 해결책으로서 Table 4.1에서 보인 것과 같이 다양한 결합형식을 이용하면 복잡한 현상의 구조물을 정의하는 데 유연성을 제공하고 또한 세부시스템을 부분적으로 분리함으로서 세부시스템의 수를 줄일 수 있다는 장점이 있다[12].

4.4 격실의 모델링
용강 시스템으로서 격실은 보통 6면 혹은 7면 이상의 경계면을 갖는 공간으로 정의되는 데 이때 발생하는 문제점으로서 상의 경계, 격실내부 경계가 대부분 강판과 내장 구획부재(lining wall, false ceiling)로 이루어져 있으므로 이들 부재 모두를 독립된 세부시스템으로 정의하려면 강판과 내장 구획부재 사이의 결합할수록 간결하고 칼럼회전 업무가 적어 비용적 경제효과가 큰 경계를 제공함에 따라 공학적 고려로써 결합값은 위에 개략값과 비교하였다.

대상선의 소음원 레벨은 ANO[15]를 이용하여 계산하였으며 고려된 주요 소음원 장비는 M/E, A/E.

Fig. 5.1 Schematic view of engine room area

<table>
<thead>
<tr>
<th>T - 1 Type</th>
<th>T - 2 Type</th>
<th>X - Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Extended</td>
<td>Basic</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 4.1 The basic and extended coupling types

Transactions of SNAK, Vol.31, No.1, February 1994
Propeller 및 Air Compressor를 고려하였다.
본 센서에 대한 모델링은 주요 관심구역인 선미부에
대해서 수행 하였다. 모델링된 전체 시스템은 320개
의 세부시스템으로 구성되어 있으며, 이들 중 음장요
소의 수는 43개로 이루어져 있다. Fig. 5.1은 대상선
의 기관실 구역에 대한 모델링 예를 보여주고있다.

5.2 예측결과 비교
NASS를 이용한 해석 결과와 실선 계측값을 공기음
및 고체음에 대해서 비교 검토를 하였다.

(1) E/R의 공기음
Fig. 5.2에는 E/R에서 계측된 소음레벨과 계산 결
과와의 비교를 보여주고 있다. 계산값은 계측값과 약
주 일치하고 있다. 특히한 만한 것은 주파수 범위에
고함도 잘 일치하고 있음을 알 수 있다.

(2) 2nd Deck의 고체음 및 E.C.R

![Fig. 5.2](image-url)
Fig. 5.2 Comparision of measured and predicted results for engine room

![Fig. 5.3](image-url)
Fig. 5.3 Comparision of measured and predicted results for 2nd deck and engine control room

Fig. 5.3에는 고체음의 경우는 2nd Deck의 계측값
과 계산값, 그리고 공기음의 경우는 E.C.R의 소음
레벨을 비교하고 있다. 고체음은 계산값이 대략 5 - 8
dB 높게 산정되고 있으며 그영향이 그대로 E.C.R의
공기음 레벨에서도 나타나고 있다.
E.C.R의 브랜드 레벨 중 1000 및 2000Hz 범위에
서의 차이는 해당 중심주파수의 E.C.R을 구성하는 판
의 일치 주파수의 공간박력으로 이론적으로 계산된
판의 방사효율(Radiation efficiency)과 실제와의 차
이로 생각된다.

(3) 거주구역
- 고체음 레벨: Fig. 5.4의 좌측에 거주구역 Deck
의 고체음 레벨을 보여주고 있다. 계측값과 계산값의
비교 결과는 Upper Deck 및 A Deck의 경우, Overall
레벨로 약 5 - 8 dB 정도 계산값이 높게 산정되고
있으며, B Deck은 브랜드 레벨 및 Overall 레벨 모두
가 잘 일치하고 있다.

- 격식특 소음레벨: Fig. 5.4의 우측에 본 소음해석
의 최종목표인 격식특 소음레벨에 대한 계측값과 계산
값의 차이를 보여주기 위하여 각 Deck 별로 대표되는 격식
물로 비교하여 보았다. 비교 결과는 Upper Deck 및
A Deck의 경우, 약 5 - 8 dB 정도 계산값이 높게 산
정되고 있으며, B Deck 및 C deck은 5 dB이내의 차
이로서 잘 일치하고 있다.

![Fig. 5.4](image-url)
Fig. 5.4 Comparision of measured and predicted results for each deck

오차의 발생 이유로는 앞에서 보인 고체음레벨의 과
다 산정에 원인이 있는 것으로 생각되며, 특히
2000Hz 범위에서 심한 오차가 발생하고 있는 데 이는
앞에서 언급된 바와 같이 일치주파수에 의한 영향인
것으로 생각된다.
6. 결 언

SEA법을 선박소음해석에 적용하기 위하여 NASS (Noise Analysis of Ship by SEA)를 개발하는 과정으로서 NASS의 검정 및 수정/보완과 모델링 기법을 확립하기 위한 연구가 수행되었다.

본 연구에서 수행된 중요한 연구결과를 요약하면 다음과 같다.

(1) 시험모델을 통한 NASS의 검증
NASS의 신설 적용가능성에 시험하기 위한 목적으로서, 선박소음해석 과정 중에 대표적인 모델이 될 수 있는 모델 A1(소음원점), 모델 A2(고체음 전달), 모델 B1(공기음 전달)에 대한 소음해석을 수행하였다. 그 결과의 비교로부터 NASS의 신설 적용가능성은 입증되었다.

(2) 모델링 기법을 제시
이론을 실제에 적용시키는 필수적인 과정으로서 모델링 기법의 확립을 위하여선 선박 소음해석에 실용될 수 있는 모델링 기법을 제시하였다. 제안된 모델링 기법은 다음과 같다.

- 소음음 모델링 : 입력파워에 대한 입력변수로서 파워와 법주, 속도, 및 가속도도 사용할 수 있도록 하였다.
- 선체구조 모델링 : 구조물건의 결합점의 종류를 다양화함으로서 모델링에 유효성을 줄 수 있었다.
- 격렬 모델링 : 스텐더지 내장판법을 단일체로 모델링함으로서 실용성을 높였다.

(3) 신설 소음해석 및 계측값의 비교
- 고체음 레벨의 파다 성 : 이러한 결과가 발생하는 주요원인으로는 주요부재의 과도한 생략 때문인 것으로 생각된다. 실제로, 입력파워의 분포를 위하여 기판실 구역에서 대상선의 주요부재가 100여 개 이상 생략되었다. 이렇게 생략된 부재들은 실제 진동에너지의 전달과정에서 부재 자체의 내부손실과 에너지의 교환과정을 겪으며 상부 감판으로 전달되는 진동에너지를 감소시킬 것이다.

특히 고체소음원 장비들이 존재하는 기판실 구역을 모델링함에는 유의할 필요가 있는 것으로 생각된다.

- 방사음의 파다성장 : 공기음 레벨의 산정시 대부분의 격실에서 1000 Hz 혹은 2000 Hz 반드에서 계측값이 계측값에서는 보이지 않는 Peak가 나타나고 있다. 이것은 실제 연금활동 이론적으로 계산된 판의 방사효율(Radiation efficiency)과 실제의 차이로써 이 문제의 해결책시로서는 이론값과 실험값의 비교, 복잡한의 유효투과에 대한 고려들을 통하여야 허용치 안해질 수 있도록 생각한다.

- 소음해석의 정확도 : 현재까지의 방법에 의한 소음해석 절도에 대한 범위의 경제들의 임계, A, B Deck에서의 5 dB 이내의 오차 등의 결과로서 소음해석의 정확도에 관련하지 긍정적인 면을 볼 수가 있다.

참고문헌

[10] "船内騒音に関する調査研究", 日本造船研究協会, 昭

[14] Katahiro Harano and Shinobu Fujii "Experimental Studies on floating accommodation system of ships(1), 船舶技術研究所報告 第22巻 第4号 研究報告, 1985, 7
