C2H4 In Pd-C6 derivative type 1, two carbon sites of the double bond of C6 localize electrons transferred from Pd-ligand.

Acknowledgment. This research was supported through KOSEF grant 94-060011013. We are grateful to Professor Y. Lee, KAIST, for his comment.

References
5. Bashilov, V. V.; Petrovskii, P. V.; Sokolov, V. I.; Lindeman, S. V.; Guzey, I. A.; Struchkov, Y. T. Organometallics 1993, 12, 991.

Electrical Properties of TiO2-x Thin Films by Thermal Oxidation

Yong-Kook Choi†, Q-Wen Choi†, Ki-Hyung Chjo, and Seung-Won Jeon

Department of Chemistry, Chonnam National University, Kwangju 500-757, Korea
†Department of Chemistry, Seoul National University, Seoul 151-742, Korea
Received February 23, 1995

The electrical properties of the TiO2-x thin films prepared by thermal oxidation from titanium sheets have been studied. The films by water vapor oxidation are oxidized more homogeneously than those by air oxidation. The electrical contact to measure the electrical conductivity of the TiO2-x electrodes is improved when the electrode surface is plated with silver. The hysteresis of the electrical conductivity curves is improved by applying alternating current rather than direct current on both sides of the electrode. The observed energy gap, E_g, is 0.05-0.16 and 0.11-0.76 eV, respectively, at low and high temperatures region. These values of the TiO2-x electrode prepared by water vapor oxidation are similar to those of single crystal TiO2. The values of donor concentration, N_d, are observed about 10^18-10^19 and 10^15-10^18 cm^-3, respectively, at low and high temperatures region. These values obtained at high temperature region are consistent with the values obtained from Mott-Schottky plot.

Introduction

The electrical and photo-electrochemical properties of semiconductor electrodes have been studied for the purpose of changing the solar energy into an electrochemical energy.1-26 Many semiconductor materials have been used as
photo-decomposition cells. Especially, TiO₂ and SrTiO₃ have been investigated by many researchers,²⁸⁻²⁹ because they are chemically stable in electrolyte solution. Electrical properties of single crystal TiO₂ have been also studied by Grant,³⁰ Cronemeyer,³¹ Barban,³² Breckenridge³³ and Hosler.³⁴ Cronemeyer³¹ also measured an electrical conductivity of reduced single crystal TiO₂ with the variation of temperature and reported that the electrical conductivity depends on temperature as an exponential function.

Breckenridge³³ and Hosler³⁴ also reported that the electrical conductivity of single crystal TiO₂ has two different energy levels at low and high temperatures region. In our previous studies,³⁵ we reported the photo-electrochemical properties of the TiO₂-x electrodes by thermal oxidation at low temperature and of the platinized TiO₂ electrodes. In the present study, we report the electrical properties of TiO₂-x thin films prepared by air and by water vapor oxidation at 600-1000 °C.

Experimental

TiO₂ thin films were prepared from titanium sheets (1.0 X 1.0 X 0.10 cm³, Nila Co., Japan, 99.999%), which were polished with alumina powder by using a Jasco Model DS-701G automatic crystal polisher (Japan). The titanium sheets were etched by dipping into a solution prepared by mixing 50 mL of HNO₃, 30 mL of glacial acetic acid, 30 mL of HF, and a few drops of Br₂. The etched sheets were rinsed with isopropyl alcohol, and dried in an oven at 50 °C for 1 hour. The titanium sheets were then used to form TiO₂ thin films by air oxidation in a Sybron Thermolyne-1300 furnace kept at 600, 700, 800, 900, and 1000 °C, respectively, for 1 min.

Figure 1 shows the apparatus used for the preparation of TiO₂-x thin films by water vapor oxidation. The titanium sheets were placed on the porcelain boat in No. 4 electric furnace, and temperatures of furnace were kept at 600, 700, 800, 900 °C, and 1000 °C, respectively. Crumel-Alumel thermocouples were used for the calibration of temperature in electric furnace. The TiO₂-x thin films were prepared by flowing Ar-gas saturated with the water vapor at 25 °C for 5 min (flow rate, 80 mL/min). The water vapor was the preheated at No. 3 furnace in Figure 1. Used Ar-gas (99.9999%) in this study was purified by passing the CaSO₄ column, Mg(NO₃)₂ column, stainless steel furnace (No. 1 in Figure 1) filled with Cu turnings kept at 300 °C, and stainless steel furnace filled with Ti turnings kept at 850 °C (No. 2 in Figure 1). The TiO₂-x thin films were then subjected to the atomic force microscopic (AFM, Park Scientific Instrument) analysis. The thicknesses of the films were calculated from the weight gain after the oxidation. Weight gains were measured by a LS-SM semimicrobalance, with the precision of 10⁻⁴ g. Thicknesses of oxide films were then calculated by using a density of TiO₂ of 4.23 g/cm³ with an assumption that the weight gain was solely due to the formation of the oxide film.

The TiO₂-x electrodes for the measurement of electrical conductivity were prepared by plating the TiO₂-x film surface with silver (area, 0.125 cm²), and the other side was polished titanium metal. Electrical conductivity measurement was carried out with a home-building apparatus. Figure 2 and 3 show an apparatus for measuring the electrical conductivity of TiO₂-x electrodes with the variation of temperature. The the oxygen in the chamber was eliminated by flowing purified Ar-gas for two hours at the flow rate of 80 mL/min. Home-building thermostat was used to control the temperature of the chamber. The electric heater in the chamber was covered with stainless steel case (the 7th part of Figure 2) in order to prevent the sample circumference from the thermal loss.

![Figure 1](image1.png)
Figure 1. Apparatus for the preparation of TiO₂-x thin films and Ar-gas purification: No. 1) filled with Cu-turnings, No. 2) filled with Ti-turnings, No. 3) preheating furnace, No. 4) sample preparation furnace, A) temperature controller, B) rotameter, and C) apparatus for conductivity measurement.

![Figure 2](image2.png)
Figure 2. Triple wall chamber for measurement of electrical conductivity: 1) gas inlet, 2) gas outlet, 3) to voltage controller, 4) to circuit in Figure 4, 5) plank, 6) thermocouples, 7) stainless steel can, 8) stainless steel, 9) sample holder in Figure 3, 10) water inlet, 11) water outlet.
The water circulation device was used to control the temperature when temperature is lowered (see the 11th part of Figure 2). The electrical contact was improved by putting aluminum rod on the silver-plated TiO$_2$-x, electrode.

Copper-Constantan thermocouples ($\theta=1.4 \times 10^{-3}$ cm) were located under the Al$_2$O$_3$ plate to measure the temperature between titanium metal and TiO$_2$-x, thin film. These temperature were recorded in the X-Y recorder by electromotive force unit after being corrected in the ice water (0 °C). The electrical conductivity of the TiO$_2$-x, electrode was measured by using the direct current (DC) or alternating current (AC) with the constant current source. The current direction was switched by using magnetic relay and sample-holder as shown in Figure 4. Capacitances were measured by Hewlett-Packard 4206B Universal Bridge at 1 KHz in order to obtain flatband potentials and donor densities of TiO$_2$-x, films.

Result and Discussion

Average thicknesses of the TiO$_2$-x, thin films prepared by air oxidation for 1 min and by water vapor oxidation for 5 min were calculated approximately 1990-2900 and 2000-3500 Å, respectively (Table 1). The thicknesses of the TiO$_2$-x, thin films were increased with the increase of furnace temperature. The thicknesses of TiO$_2$-x, thin films by water vapor oxidation were thicker than those by air oxidation.

Figure 5 shows AFM pictures of TiO$_2$-x, thin films. The surfaces of the films by water vapor oxidation at higher temperature were more homogeneous than those of lower tem-
temperature counterparts. The surfaces of the films by air oxidation also partially were given island-like recrystallization. Although the AFM pictures cannot explain the molecular configuration state of the TiO$_2$-x film surface, the oxidized film surfaces can be compared with each other.

Flatband potentials and donor densities of TiO$_2$-x films were determined from intercepts and slopes of the Mott-Schottky plot

$$\frac{1}{C^2} = \frac{2}{\varepsilon_0 \varepsilon \kappa N_D} \left(\frac{-\phi_e - kT}{e} \right)$$

(1)

where C_e is the capacitance, ε_0 and ε the permittivity of vacuum and semiconductor, e the electrostatic charge, N_D the donor density, ϕ_e the potential drop in the space charge ($V-V_e$), V the applied potential, V_e the flatband potential, k the Boltzmann constant, and T the absolute temperature. Thus, the $1/C_e^2$ vs. electrode potential plot allows us to obtain flatband potential from intercept on the potential axis, which would be accurate to kT/e, and donor density from the slope. Figure 6 shows typical Mott-Schottky plots.

Table 1 lists flatband potentials and donor densities obtained from the Mott-Schottky analysis for TiO$_2$-x films. As shown in Table 1, the values of flatband potentials and donor densities were given -0.96 to -1.08 V and 10^9 to 10^{10} cm$^{-3}$, respectively. The results indicate that donor densities and flatband potentials are affected by the oxidation temperature of titanium sheets. Thus, the oxidation temperature appears to be important for the study on the properties of TiO$_2$-x films.

Various methods were tried to measure the electrical conductivity of the TiO$_2$-x electrodes. Figure 7 shows the resistance curve for the TiO$_2$-x electrode vs. to the temperature using the direct current. Figure 7(A) shows resistance curve measured when linking with silver-paste for electrical contact of copper wire on the TiO$_2$-x film surface, and Figure 7(B) shows resistance curve measured when silver-plating. Figure 7(a) and 7(b) also show resistance values measured while the temperature was lowered and raised, respectively. As shown in Figure 7, resistance gap between curve (a) and (b) is very small in case of the silver-plated TiO$_2$-x film. When silver-paste is used for electrical contact, resistance gap is slightly large because the ohmic contact of silver-paste
differs from the variation of temperature.

Figure 8 shows the resistance curve measured by changing the direction of current (AC) between Ti and TiO₂₋₋ film. As shown in Figure 8, the value of resistance gap between (a) and (b) is more reduced than that measured by using DC. The energy gap (E_c-E_E) between the conduction band and donor level in the semiconducter is as follows:

\[\sigma = \mu(N_c) e^{3/2}/2 \exp[-(E_c-E_E)/2kT] \]

(2)

In the Eq. (2) \(\sigma \) is electrical conductivity, \(N_c \) the effective density of states in the conduction band, \(E_c \) the energy at the bottom of the conduction band, \(E_E \) the energy of donor level, \(q \) the electronic charge, \(\mu \) the mobility of the electron in TiO₂₋₋(≈0.1 cm²/Vs). The energy gap can be obtained from the linear slope, when Inσ against 1/T is plotted. Breckenridge reported that the electrical conductivity of reduced single crystal TiO₂ is given according to the two different lines. According to Breckenridge, Eq. (2) can be expressed as follows:

\[\sigma = K_e e^{-E_c/2kT} + K_h e^{-E_h/2kT} \]

(3)

In the Eq. (3), \(K_e \) is \(\mu(N_c) e^{3/2}/2 \) and \(E_d \) and \(E_h \) are energy gap (E_E) at the low and the high temperature region, respectively. At the low temperature region, \(E_d > E_h \). Therefore, Eq. (3) is written as

\[\sigma = K_e e^{-E_c/2kT} \]

(4)

At the high temperature region, \(E_d < E_h \). There, the Eq. (3) is written as

\[\sigma = K_h e^{-E_h/2kT} \]

(5)

According to Eq. (4) and Eq. (5), a plot of ln(\(\sigma \)) vs. 1000/T should yield a straight line with a slope of \(E_d/2k \) and k intercept of lnK_e.

The (a) and (b) in Figure 9 indicate the In \(\sigma \) vs. 1000/T plots from the electrical conductivity measured while the temperature was raised or lowered. These plots show the straight lines with two different slopes and these results are the same for the TiO₂₋₋ electrodes used in this study. The slope of low temperature ranges is due to excitation of electron at the lowest conduction band from the first donor level. On the other hand, the slope of high temperature ranges is primarily a result of excitation of electrons to the lowest conduction band from the second donor level. The \(E_d \) value from the slope and the donor densities, \(N_d \), from the intercept can be calculated in case that \(\mu \) (0.1 cm²/Vs) and \(N_c \) (2.51×10¹⁸ cm⁻³) are known. The values of \(E_d \) and \(N_d \) are listed in Table 2 and Table 3. As shown in Table 2 and 3, \(E_d \) and \(N_d \) are almost the same whether the temperature is lowered or raised. We obtained \(E_d \) of 0.05-0.16 eV in the low temperature region (25–140 °C) and 0.11-0.76 eV in the high temperature region (150–320 °C). These values tend to increase for the TiO₂₋₋ electrodes at high temperature. Breckenridge observed an \(E_d \) of 0.1 eV in the low tem-

Table 2: The values of film thickness and \(E_d \) for TiO₂₋₋ electrodes

<table>
<thead>
<tr>
<th>Samples</th>
<th>(E_{th}) cm⁻³</th>
<th>(E_{th}) cm⁻³</th>
<th>(E_{th}) cm⁻³</th>
<th>(E_{th}) cm⁻³</th>
</tr>
</thead>
<tbody>
<tr>
<td>600(AO)</td>
<td>4.32×10¹⁵</td>
<td>5.33×10¹⁷</td>
<td>3.39×10¹⁵</td>
<td>4.76×10¹⁷</td>
</tr>
<tr>
<td>700(AO)</td>
<td>1.88×10¹⁶</td>
<td>3.81×10¹⁸</td>
<td>2.10×10¹⁶</td>
<td>3.64×10¹⁸</td>
</tr>
<tr>
<td>800(AO)</td>
<td>8.13×10¹⁷</td>
<td>6.17×10¹⁹</td>
<td>8.11×10¹⁷</td>
<td>5.49×10¹⁹</td>
</tr>
<tr>
<td>900(AO)</td>
<td>3.24×10¹⁸</td>
<td>9.95×10²¹</td>
<td>3.12×10¹⁸</td>
<td>8.37×10¹⁸</td>
</tr>
<tr>
<td>1000(AO)</td>
<td>7.29×10¹⁹</td>
<td>3.59×10²¹</td>
<td>6.98×10¹⁸</td>
<td>3.44×10¹⁹</td>
</tr>
<tr>
<td>600(VO)</td>
<td>2.92×10¹⁰</td>
<td>1.77×10³²</td>
<td>2.84×10¹⁶</td>
<td>1.68×10¹⁶</td>
</tr>
<tr>
<td>700(VO)</td>
<td>4.95×10¹¹</td>
<td>2.65×10³³</td>
<td>3.77×10¹⁷</td>
<td>2.63×10¹⁷</td>
</tr>
<tr>
<td>800(VO)</td>
<td>6.12×10¹²</td>
<td>8.19×10³⁴</td>
<td>6.02×10¹⁸</td>
<td>8.02×10¹⁸</td>
</tr>
<tr>
<td>900(VO)</td>
<td>1.22×10¹³</td>
<td>1.24×10⁴¹</td>
<td>1.21×10¹⁹</td>
<td>1.16×10¹⁹</td>
</tr>
<tr>
<td>1000(VO)</td>
<td>2.38×10¹⁴</td>
<td>6.23×10⁴¹</td>
<td>2.19×10²⁸</td>
<td>5.99×10²¹</td>
</tr>
</tbody>
</table>

Measurements were made while the temperature of TiO₂₋₋ electrode was raised.

Table 3: The values of donor density for TiO₂₋₋ electrodes

<table>
<thead>
<tr>
<th>Samples</th>
<th>(N_d) cm⁻³</th>
<th>(N_d) cm⁻³</th>
<th>(N_d) cm⁻³</th>
<th>(N_d) cm⁻³</th>
</tr>
</thead>
<tbody>
<tr>
<td>600(AO)</td>
<td>4.32×10¹⁵</td>
<td>5.33×10¹⁷</td>
<td>3.39×10¹⁵</td>
<td>4.76×10¹⁷</td>
</tr>
<tr>
<td>700(AO)</td>
<td>1.88×10¹⁶</td>
<td>3.81×10¹⁸</td>
<td>2.10×10¹⁶</td>
<td>3.64×10¹⁸</td>
</tr>
<tr>
<td>800(AO)</td>
<td>8.13×10¹⁷</td>
<td>6.17×10¹⁹</td>
<td>8.11×10¹⁷</td>
<td>5.49×10¹⁹</td>
</tr>
<tr>
<td>900(AO)</td>
<td>3.24×10¹⁸</td>
<td>9.95×10²¹</td>
<td>3.12×10¹⁸</td>
<td>8.37×10¹⁸</td>
</tr>
<tr>
<td>1000(AO)</td>
<td>7.29×10¹⁹</td>
<td>3.59×10²¹</td>
<td>6.98×10¹⁸</td>
<td>3.44×10¹⁹</td>
</tr>
<tr>
<td>600(VO)</td>
<td>2.92×10¹⁰</td>
<td>1.77×10³²</td>
<td>2.84×10¹⁶</td>
<td>1.68×10¹⁶</td>
</tr>
<tr>
<td>700(VO)</td>
<td>4.95×10¹¹</td>
<td>2.65×10³³</td>
<td>3.77×10¹⁷</td>
<td>2.63×10¹⁷</td>
</tr>
<tr>
<td>800(VO)</td>
<td>6.12×10¹²</td>
<td>8.19×10³⁴</td>
<td>6.02×10¹⁸</td>
<td>8.02×10¹⁸</td>
</tr>
<tr>
<td>900(VO)</td>
<td>1.22×10¹³</td>
<td>1.24×10⁴¹</td>
<td>1.21×10¹⁹</td>
<td>1.16×10¹⁹</td>
</tr>
<tr>
<td>1000(VO)</td>
<td>2.38×10¹⁴</td>
<td>6.23×10⁴¹</td>
<td>2.19×10²⁸</td>
<td>5.99×10²¹</td>
</tr>
</tbody>
</table>

Measurements were made while the temperature of TiO₂₋₋ electrode was lowered.

Figure 10. Variation of conductivity for 900 (VO) TiO\(_2\), electrode at constant temperature; a) at 50 °C and b) at 150 °C.

Figure 11. Plots of \(\sigma \) vs. \((\sigma_0-\sigma)/t\) for data shown in Figure 10(a).

temperature region and 0.2 eV in the high temperature from the electrical conductivity measurement of single crystal TiO\(_2\). We believe that ours and Breckenridge values are more consistent. In our study, the TiO\(_2\)-x thin films by air oxidation at 1000 °C have properties of single crystal TiO\(_2\). Otherwise, the TiO\(_2\)-x thin films by water vapor oxidation at 800-1000 °C have properties of single crystal TiO\(_2\). The values of \(N_0 \) were 1015-1019 cm\(^{-3}\) in the low temperature region and 1017-1021 cm\(^{-3}\) in the high temperature. The values of \(N_0 \) in the low temperature are similar to the value obtained from the Mott-Schottky plot. These values also agreed to that of Breckenridge's report\(^4\) on the single crystal TiO\(_2\).

Figure 10 shows the electrical conductivity of the TiO\(_2\)-x electrode measured with the variation of time at the constant temperature. The curve (a) and (b) indicate exponential function. Whitehurst\(^6\) reported the equation of the electrical conductivity depending on time, as follows.

\[
\sigma = \sigma_0 + B(\sigma_0 - \sigma)/t \tag{6}
\]

Table 4. The values of B for 900(VO) TiO\(_2\)-x electrode at constant temperature

<table>
<thead>
<tr>
<th>Temperature, °C</th>
<th>(10^{-4})</th>
<th>(10^{-5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1.62 × 10^6</td>
<td>1.40 × 10^6</td>
</tr>
<tr>
<td>50</td>
<td>1.05 × 10^6</td>
<td>1.14 × 10^6</td>
</tr>
<tr>
<td>100</td>
<td>8.18 × 10^4</td>
<td>8.73 × 10^4</td>
</tr>
<tr>
<td>125</td>
<td>6.62 × 10^4</td>
<td>6.64 × 10^4</td>
</tr>
<tr>
<td>150</td>
<td>5.38 × 10^4</td>
<td>5.90 × 10^4</td>
</tr>
<tr>
<td>175</td>
<td>3.80 × 10^4</td>
<td>3.73 × 10^4</td>
</tr>
<tr>
<td>200</td>
<td>2.95 × 10^4</td>
<td>2.89 × 10^4</td>
</tr>
<tr>
<td>225</td>
<td>2.51 × 10^4</td>
<td>2.71 × 10^4</td>
</tr>
<tr>
<td>250</td>
<td>1.90 × 10^4</td>
<td>2.00 × 10^4</td>
</tr>
</tbody>
</table>

*Measurements were made while the temperature of TiO\(_2\)-x electrode was raised. *Measurements were made while the temperature of TiO\(_2\)-x electrode was lowered.

In the Eq. (6), is the electrical conductivity at time \(t \), \(\sigma_0 \) the electrical conductivity at \(t=0 \), \(\sigma \) the electrical conductivity maintained constantly equilibrium at \(t=\infty \), \(B \) a factor at isothermal condition which is the reciprocal number of the rate constant. Figure 11 shows the plot \(\sigma \) against \((\sigma_0-\sigma)/t\). The values of \(B \) were obtained from the slope, which was listed in Table 3. These values were comparatively corresponded with those which Whitehurst\(^6\) measured for the single crystal TiO\(_2\) and ceramic. In our study, the \(B \) values for the TiO\(_2\)-x electrodes by air oxidation at 1000 °C and by water vapor oxidation at 800-1000 °C were corresponded with the electrical properties of the single crystal TiO\(_2\).

Conclusion

From the results of the electrical conductivity of the TiO\(_2\)-x thin film prepared by air oxidation and by water vapor oxidation, we conclude that:

1. The surfaces of TiO\(_2\)-x thin films prepared by water vapor oxidation are more homogeneous than those by air oxidation.
2. The electrical contact to measure the electrical conductivity of the TiO\(_2\)-x films is improved when the electrode surfaces are plated with silver on the TiO\(_2\)-x film.
3. The hysteresis of the electrical conductivity curves is improved by applying alternating current rather than direct current on both sides of the electrode.
4. The slopes of \(\sigma \) vs. \(1000/T \) plots are given two branches. The \(E_a \) values are 0.05-0.16 eV in the low temperature region and 0.11-0.76 eV in the high temperature. Furthermore, the values of \(E_a \) of the TiO\(_2\)-x film by water vapor oxidation are consistent with the values that Breckenridge\(^4\) indicated on the single crystal TiO\(_2\).
5. The values of donor densities are \(10^{15}-10^{19} \) cm\(^{-3}\) in the low temperature and \(10^{27}-10^{29} \) cm\(^{-3}\) in the high temperature. Donor densities are affected by the oxidation temperature of titanium metal sheet. These values are also consistent with the value obtained from Mott-Schottky plot.
6. The change of electrical conductivity of the TiO\(_2\)-x film with the variation of time at a constant temperature indicates the exponential function.

Acknowledgment. This work was supported by the
Basic Science Research Institute Program, Ministry of Education of Korea. Many thanks to professor Il-cheol Jeon, chonbuk university. He helped us with the AFM measurement of the sample.

References

