국민학교 아동들의 속력 개념 형성에서
컴퓨터 인터페이스의 활용 효과

김형수 ⋅ 권재술
(한국교원대학교)

(1995년 1월 16일 발표)

I. 서론

1. 연구의 필요성 및 목적

1946년 모리치와 에서트에 의한 최초의 디지털 전자식 컴퓨터인 에니아의 완성 이후(스미스, 1984) 발전을 거듭하여 오늘날에는 32비트 개인용 컴퓨터가 널리 보급되고 있다.

CAI 형태로 학습한 학생은 평균 점수가 24%나 높으며(허준아, 1985), 학습 지속력을 참고서 점검보다 훨씬 약간하다(김중주, 1990).

그러나 학습 현장에서 소프트웨어적인 컴퓨터 활용에 대하여 단순히 교사나 참고서의 내용을 그대로 옮겨 놓은 것과 같은 상태이며, 또한 학습자의 내적 학습과정을 드러내 축층한 인지 과정을 교정해 줄 수 있는 조치가 결여되어 단지 컴퓨터가 참고서의 내용을 자동적으로 보여 주는 page turnover 역할만 수행하고 있다(정현호 등, 1995)는 비판이 대두되고 있어 또 다른 컴퓨터의 활용에 대한 연구가 필요함을 시사하고 있다.

CAI 프로그램에 의한 컴퓨터의 사용은 실제의 실험(자연 현상)과는 거리가 있는 실험 모사로 아동들의 실제 실험하고 자료를 얻어내어 이로부터 과학적인 개념을 도출해내는 실험과정과 자연 현상을 통한시하는 문제점을 갖고 있다. 특히 속력과 운동의 개념 학습은 학생들이 실험이 하지만 자료를 수집하고 이를 다시 그래프화하여 개념 학습을 함으로써 실제의 실험 상황과 수집된 자료의 처리(그래프화 등) 사이의 고전적인 간극으로 인하여 개념 학습에 어려움이 있다. 속력과 운동에 대한 학습에서 이들이 실험과 동시에 자료가 수집되고 이를 그래프으로 동시에 처리하여 모니터에 나타내어 줄으로써 실험과 결과 처리 사이의 시간적인 간극을 해소해 줄 필요가 절실히 요구되고 있다.

본 연구에서는 이와 같은 요구에 따라 컴퓨터 인터페이스를 활용한 아동의 속력과 운동에 관련된 실험과 동시에 자료를 수집하고 처리하여 그래프로 나타내어 줄으로써 아동들의 속력과 운동에 대한 개념 형성에 대하여 알아보려 한다.

2. 연구의 문제

1) 전통적인 방법을 통하여 학습한 아동들의 개념 형성에서 성취도는 어떠한가?
2) 컴퓨터 인터페이스를 이용하여 학습한 아동들의 속력 개념의 성취도는 어떠한가?
3) 컴퓨터 인터페이스를 이용한 학습 방법은 전통적인 학습 방법보다 효과적인가?
3. 연구 결과의 일반화에 대한 제한

1) 연구 대상은 컴퓨터 인터페이스의 제한으로 연구자가 근무하는 학교의 4, 5학년을 대상으로 하였다.
2) 연구 결과는 농촌의 면단위 지역의 특정 학년에 적용하여 얻은 것으로 일반화에는 무리가 따른다.

II. 선행 연구의 고찰

1. 속력 개념의 발달

김현재(1978)는 “Piaget의 아이들의 운동과 속력 개념에 관한 고찰”에서 Piaget의 운동과 속력 개념에 관해 있는 실험이 고찰하고 이를 바탕으로 하여 속력 개념의 실험범 형성 수준을 Piaget의 4단계 분류와 Shayer보다 더 세분화하여 제시하였다. <그림 1>은 이를 나타낸다.

<table>
<thead>
<tr>
<th>Piaget의 부합</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
</table>

<그림 1> 운동과 속력 개념의 실험범 형성 수준

운동과 속력 개념의 형성은 전조작기의 생성기에서 형성되기 시작하여 형식적 조작기의 형성기에 걸쳐 형성되며, 피아제의 발달 수준 연령에 따라 우리의 학제와 비교하면 <표 1>과 같이 국민학교 1학년에서 발달되기 시작하여 중학교 3학년까지에 걸쳐 형성될 수 있다.

2. 개념 획득의 모형

1) Piaget의 지적 조직과 작용
Piaget는 지적 발달을 도식(서기), 동화(연화), 조절(조절), 평형(균형)을 통하여 발달한다고 하였다.

도식 ----> 동화조절 ----> 도식

(1) ↑
새 자극
(2) ↑
평형

도식(1) : 이미 가지고 있던 도식, 도식(2) : 새로운 도식

<그림 2> Piaget의 지적 조직과 작용
이에 따라 과학 개념의 변화, 유형, 유형별 인지적 비평형의 특징, 개념 변화의 인지적 과정을 제시하였다.

(1) 인지 구조와 자연 현상

인지구조는 개념뿐만 아니라 그것을 조직하는 과정적 지식까지 포함한다. 인지구조 C1은 학습자가 현재 가지고 있는 개념이다. 인지구조 C2는 새로운 학습에 할 개념이다. 자연현상은 실제의 현상일 수도 있고, 실제 자연현상의 의의있는 표현일 수 있다.

(2) 지적인 비평형의 유형

비평형(1)은 이미 Piaget나 Hashweh의 모형에서 설명된 것으로 C1으로는 R2를 설명할 수 없는 것이다. 비평형(2)는 아직까지 모형에 나타나 있지 않다. 그 이유는 C2가 C1보다 높은 차원의 개념 또는 C2가 C1을 이미 포함하고 있는 개념일 때 그 존재가치가 없다고 볼 수 있다.

비평형(3)은 인지구조간의 문제로 학습자의 새로운 개념이 기존의 인지구조에 완전히 통합되지 않고 조성방식에 영향을 미치게 되므로 붙여서 볼 수 있다.

(3) 과학 개념 변화의 유형과 인지 과정

과학 개념의 변화 유형과 인지 과정은 <표 2>와 같이 요약할 수 있다.

3. 사각적 자료 제시가 개념의 학습에 미치는 영향

전체결과 김준태(1992)는 "과학개념 학습지속 효과의 유형과 그 특성 분석"에서 시 및 단위 학교로 대상으로 하여 무작위 3개 학교를 선정하고, 학교당 4개반을 무작위로 선정 2학년을 대상으로 연구한 결과 <표 3>, <표 4>의 결과를 얻었다.

이는 몇몇의 개념 형성은 정량적인 것보다는 영상적인 것이, 복합적인 인적, 정량적인 문항보다는 영상적이며 정성적인 경우가 더 효과적임을 보여준다 하겠다.

4. 컴퓨터를 이용한 교수-학습

Tinker(198)는 "교수 실험에서 마이크로 컴퓨터"에서 컴퓨터
5. CAI

교육부(1992)에서 발행한 "컴퓨터 교육 지도 자료"에서 CAI에 대하여 다음과 같이 기술하였다.

CAI가 프로그램 학습보다 진보된 교수 방법이라는 이유는 첫째, 학습 자료를 제시하고 그에 대하여 반응할 수 있는 방법이 다양하다는 점이다. 둘째, CAI는 프로그램 제작자의 기술에 따라 학습자와 컴퓨터가 서로 대화를 나눌 수 있는 환경이 조성된다. 셋째, CAI는 분기법을 최대한 사용하여 학습자의 반응에 따라 학습 자료를 적절히 제공하고 학습자의 행동을 강화하면서 다양한 방법으로 학습을 진행할 수 있다.

6. CAI의 효과

학교 성취도의 효과에 대하여는 허윤나, 김종주 등의 연구에서 컴퓨터를 사용하여 학습한 학생이 더 높은 성취도를 나타내고 있다.

양일호와 정진우의 과학학력 검사와 CAI성취도의 비교 연구에서, 성취 동기 수준, 논리적 사고 수준, 과학과 대도, 탐구 능력 수준, 과학 학습 성취도 및 성명에 따른 연구 분석 결과 탐구 능력이 낮은 학생, 과학 과목에 대한 태도가 낮은 학생, 과학 학습 성취도에서 CAI가 효과적인 결과를 얻었으며, 여학생이 남학생보다 CAI의 효과가 더 효과적임을 얻었다.

III. 연구의 실행

1. 연구의 설계

\[\begin{array}{ccc}
01 & X1 & 02 \\
01 & X2 & 02 \\
\end{array} \]

\(O1, O2 \rightarrow \text{검사} \)
\(X1 \rightarrow \text{비교반} \)
\(X2 \rightarrow \text{실험반} \)

\(<\text{그림 4}>\) 실험 설계

연구는 \(<\text{그림 4}>\)와 같이 동일집단 시전 시후 실험 설계로 비교반과 실험반 모두 사전 검사, 저치(수업), 사후 검사의 방법으로 설계하였다.

2. 연구 대상의 선정

연구 대상은 연구자가 근무하는 학교의 4, 5학년을 대상으로 하였다. 또한 실험반과 비교반의 구성은 전학년도의 자연과 성격을 기준 등등을 부과하고, 남학생은 학수 동등으로 여학생은 1등급으로 나누어 정성하였다.

3. 컴퓨터 인터페이스의 개발

컴퓨터 인터페이스는 \(<\text{그림 5}>\)\(\text{가}\)의 문제의 거리를 감지하는 장치, 감지된 거리를 디지털로 변환하는 장치 그리고 이를 컴퓨터의 주장장치로 입력하는 장치로 구성하였다.

\(\text{거리 감지 장치 (초음과 센서 이용)} \)
\(\text{디지털 변환 장치 (거리에 비례한 8bit의 binary 값)} \)
\(\text{입력장치} \)

\(<\text{그림 5}>\) 인터페이스의 구성

1) 거리 감지 장치(초음과 센서 이용)

거리 감지 장치는 초음과 센서를 이용하여 제작하였다. 초음파를 초음과 센서를 이용하여 일정 시간(5msec) 발사하고 대상 물체로부터 반사되어 오는 초음파를 수신용 센서로 수신한다. 이때 발사로부터 수신까지에 소요되는 시간에 비례하는 필스(puls)를 생성하여 디지털 변환 장치로 보낸다.

2) 디지털 변환 장치

디지털 변환 장치는 거리에 비례하는 8bit의 binary 값을 생성하는 장치이다. 초음파의 전달 속도는 340m/sec (20°C) 이므로 정밀도를 5cm로 한 직사 방식을 이용하므로 6.8kHz의 puls로 8bit의 binary 값을 생성하도록 하였다.

3) 입력 장치

입력 장치는 디지털 변환 장치에서 생성된 8bit의 binary 값을 컴퓨터의 찾는 slot을 통하여 컴퓨터의 주장장치로 입력하는 장치이다.

4. 수업안의 작성

학습 내용은 국민학교 교사용 지도서 5학년 자연과를 참
고하여 <표 5>와 같이 목표를 설정하였으며 학습 요소는 <표 6>과 같다.

<표 5> 학습목표

1) 속력의 특성을 비교할 수 있다.
2) 여러 가지 운동 상태를 설명할 수 있다
3) 추가 또는 감소하는 속력을 설명할 수 있다.

수용인은 학습목표와 학습 요소를 달성할 수 있는 내용으 로 작성하였으며, 실험방법 수용인과 비교하여 적용 할 수용인을 별도로 작성하였다.

<표 6> 학습 요소

1) 그래프의 기술기로 속력 비교하기
2) 적선 운동 후 정지 상태를 운동 설명하기
3) 적선 운동과 정지 상태를 반복되는 운동 설명하기
4) 방향이 변하는 운동 설명하기
5) 최저 중량하는 속력 설명하기
6) 추가 감소하는 속력 설명하기

5. 프로그램의 개발

프로그램의 내용은 text mode에서 초음과 센서로부터 입력된 값의 배울을 결정하는 값을 입력받고(그래프의 세로 방향이 이동 거리 결정), 가로 방향의 이동 방향을 결정하는 값을 입력받는 둘의 대화로 하였다.
그래프의 화면 색상은 graphic mode에서 이루어지며, 선 그래프는 점을 이동시키는 방법에 의하여 그러도록 하였다.
프로그램의 호름도는 <그림 6>과 같다.

6. 실험의 수행

실험은 비교반과 실험반의 수업이 주된 활동이다. 수업은 실험 횟수에 따른 오차를 줄이기 위하여 4.5학년을 동시에 실시하였으며, 개인의 특성에 따른 오차를 줄이기 위하여 연구자가 두 반 모두 직접 수업을 하였다.

7. 평가 및 검증 방법

평가는 동일 문항으로 하였으며, 사전 평가 후 1개월 정도의 기간이 경과 후에 수업을 실시하고 사후 평가는 수업 이 완료됨과 동시에 실시하였다.
평가 도구는 <표 5>의 학습목표를 달성하기 위하여 <표 6>의 학습 요소의 내용으로 평가 문항을 구성하였으며, 문항의 내용은 <표 7>과 같다.

<그림 6> 프로그램의 호름도

<표 7> 평가 문항의 내용

<table>
<thead>
<tr>
<th>문항 번호</th>
<th>문항 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>여러 가지 운동의 속력 비교</td>
</tr>
<tr>
<td>2</td>
<td>일정 속력으로 전진 후 정지한 운동</td>
</tr>
<tr>
<td>3</td>
<td>일정 속력으로 전진 후 정지 후에 다시 전진한 운동</td>
</tr>
<tr>
<td>4</td>
<td>일정 속력으로 전진 후 즉시 180도 방향 전환한 운동</td>
</tr>
<tr>
<td>5</td>
<td>일정 속력으로 전진 후 일시 정지하고 180도 방향 전환한 운동</td>
</tr>
<tr>
<td>6</td>
<td>속력이 점차 증가한 운동</td>
</tr>
<tr>
<td>7</td>
<td>속력이 점차 감소한 운동</td>
</tr>
</tbody>
</table>

검증은 사전 평가에 대하여 1 검증을 하였으며, 사후 평가에 대하여는 일원 변량 분석으로 하여 검사의 결과가 유의한 차가 있는지를 검증하였다.
V. 결과 분석 및 논의

1. 사전 점사 결과의 분석

4학년과 5학년의 사전 검사는 비교반과 실험반 간의 조건에서 검사를 받게 하기 위하여 동일 교실에 수용하여 검사하였다.

4학년의 사전 검사 결과 분석은 <표 8>과 같다. 4학년의 분석 결과 두 집단간의 차이는 없는 것으로 나타났다.

<표 8> 4학년 사전 검사 결과 분석

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>DF</th>
<th>t값</th>
<th>유의도</th>
</tr>
</thead>
<tbody>
<tr>
<td>비교반</td>
<td>12</td>
<td>0.08</td>
<td>0.28</td>
<td>23</td>
<td>1.001</td>
<td><0.05</td>
</tr>
<tr>
<td>실험반</td>
<td>13</td>
<td>0.00</td>
<td>0.00</td>
<td>23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5학년의 사전 검사 결과 분석은 <표 9>와 같다. 5학년의 사전 검사 결과 두 집단간의 차이는 없는 것으로 나타났다.

<표 9> 5학년 사전 검사 결과 분석

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>DF</th>
<th>t값</th>
<th>유의도</th>
</tr>
</thead>
<tbody>
<tr>
<td>비교반</td>
<td>9</td>
<td>0.00</td>
<td>0.00</td>
<td>18</td>
<td>1.328</td>
<td><0.05</td>
</tr>
<tr>
<td>실험반</td>
<td>11</td>
<td>0.18</td>
<td>0.38</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. 문항별 성취 비교

4학년의 문항별 성취 비교는 <표 10>과 같으며 속력 비교에 대하여는 비교반과 실험반의 성취도가 비슷하게 나타났다. 운동의 정지 및 방향 전환에 대한 문항은 비교반에 비하여 실험반의 이동이 활발한 편은 성취도를 보이며 주고 있다. 속력이 점차 증가하는 운동이나 감속하는 운동에서는 큰 차이를 보이고 있다.

<표 10> 4학년 문항별 성취 비교

<table>
<thead>
<tr>
<th>문항 번호</th>
<th>문항</th>
<th>속력</th>
<th>정지 및 방향</th>
<th>중, 감속</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>병, 3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>비교반</td>
<td>0.33</td>
<td>0</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>실험반</td>
<td>0.38</td>
<td>0.92</td>
<td>1.0</td>
</tr>
</tbody>
</table>

5학년도 4학년과 같이 속력의 비교에서는 두 집단간의 차이는 보이지 않고 있다. 운동의 방향 전환 및 정지 문항의 성취도에서는 큰 차이를 보이지 않았다. 속력의 점차 증가하거나 감소하는 운동 문항의 성취도에서는 차이를 보이고 있다.

4. 5학년에 나타난 결과에 의하면 속력의 비교에 대하여는 컴퓨터 인터페이스를 사용하여 수업하는 것이 효과가 없음을 알 수 있다.

그러나 운동의 방향 전환이나 정지에 대한 개념은 컴퓨터 인터페이스를 사용하는 것이 더 효과적임을 보여주고 있다.

3. 사후 점사의 통계적 분석

각 집단별 평균의 분포는 <그림 7>과 같이 그림에 나타난 평균의 차가 유의미한 차이가 있을 것으로 보이기 위하여 일원 변량분석을 하였으며 분석 결과는 <표 12>와 같다. 각 집단은 의미있는 차이가 있음을 검증되었다.

<표 11> 5학년 문항별 성취 비교

<table>
<thead>
<tr>
<th>문항 번호</th>
<th>문항</th>
<th>속력</th>
<th>정지 및 방향</th>
<th>중, 감속</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>병, 3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>비교반</td>
<td>0.22</td>
<td>0.56</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>실험반</td>
<td>0.27</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<그림 7> 집단별 평균의 분포

<표 12> 사후 평가의 일원 변량 분석표

<table>
<thead>
<tr>
<th>변량 원</th>
<th>자승화</th>
<th>자유도</th>
<th>평균자승화</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>집단간(SSa)</td>
<td>157.41</td>
<td>3</td>
<td>52.47</td>
<td>14.69</td>
</tr>
<tr>
<td>집단내(SSw)</td>
<td>146.23</td>
<td>41</td>
<td>3.57</td>
<td></td>
</tr>
<tr>
<td>전 체(SSH)</td>
<td>303.64</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 169 -
분석 결과로 볼 때 4학년 및 5학년의 학년내 평균은 비교반에 비하여 실험반이 더 높게 나타났다. 또한 4학년과 5학년에서 비교반사이에는 차가 있으나 실험반사이에는 차가 없다. 이는 컴퓨터 인터페이스를 사용할 때 4학년에서 더 효과적이라 할 수 있다.

4. 결과에 대한 논의

실험반의 아동들이 비교반의 아동들보다 운동과 습격에 대하여 적절한 개념이 형성된 것은 이와 관련된 내용의 학습을 하여 결과를 얻기 위해 그룹 등 적절한 조화 형식으로 전환할 때까지의 시간적인 간극과 4, 5학년의 아동들이 아직 구체적 조작기여기 때문에 운동과 이를 상징화한 그래프 등과 같은 양식으로 전환에 곤란을 갖고 있음을 나타나는 결과라고 할 수 있다. 그러나 연구자가 개발한 컴퓨터 인터페이스는 아동들의 운동과 동시에 그래프 형태로 모니터에 나타내어 증대로 운동과 표현 형태에 대한 이해가 쉽게 이루어짐으로서 나타나는 결과라 하겠다. 이를 Tinker의 결과와 같이 아동들이 실험과 나타나는 현상에 더 집중한 결과이며, 컴퓨터의 과학 개념의 인지적 모델과 Piaget의 지적 조직화에 대한 연구에서 지적한 것과 같이 실험 수업전에는 새로운 자극(현상 또는 개념)에 대하여 이미 학습한 개념과 같은 현상을 보였으며, 실험 수업 후에는 실험반(컴퓨터 인터페이스 사용)에서 대다수의 아동들이 갑음이 해소되고 새로운 개념이 확득되었음을 나타내었다고 할 수 있다.

각 문항별 성취도 비교 분석의 결과 여러 문항의 속력 비교하기는 실험반과 비교반의 성과 차이는 거의 없었다. 반면 점수 및 방향의 전환은 있는 운동,가속 또는 감속 운동에 대한 성취도 비교는 실험반의 성취도가 더 높게 나타났다. 이와 같은 결과는 속력의 비교는 컴퓨터 인터페이스를 활용하는 수업과 전통적인 수업에서 그 차이가 없음을 보여 주는 것이며, 방향의 전환, 전진과 후진 및 정지 운동 그리고 가속과 감속 운동에 대하여는 운동의 상태를 모니터에 동시적으로 그래프로 나타내어 중에서 아동들이 운동과 그래프사이의 관계를 쉽게 연계시킬 수 있도록 나타내는 것이 필요하다. 실험반의 아동들의 운동과 속력 개념에 대한 고찰에서 운동의 진행 방향 변환의 변화는 국민학교 1학년에서 발달하기 시작하여 5학년에서, 가속 운동은 중학교 3학년에서 완성되었다고 하였다. 두 가지 운동과 관련된 개념의 획득에서 성취도 비교는 실험반의 아동들이 더 높게 나타난 것은 컴퓨터 인터페이스를 사용함으로서 두 가지 운동 개념의 완성기를 앞당길 수 있음을 나타내었다고 볼 수 있다.

통계적 분석의 결과는 4, 5학년 모두 학년내에서 실험반 이 비교반에 비하여 더 높은 성취도를 보였고, 특히 4학년이 5학년보다 실험반과 비교반 사이의 성취도 차가 크게 나타났다. 이는 전제설과 검증대가 영상적 문항이 물리적 개념 형성에서 효과적이라는 연구 결과와 일치한다고 할 수 있다. 또 실험반과 비교반의 학년간 비교 분석 결과 4학년과 5학년의 실험반끼리는 차가 없었으나 비교반끼리는 의미 있는 차가 나타났다. 이는 실험과 비교반의 4학년 및 5학년 모두 전통적인 수업 방법보다는 컴퓨터 인터페이스를 활용하여 수업하였을 때 아동들이 운동과 속력에 관한 개념이 더 잘 형성되었음을 보여주는 것이며, 특히 비교반에서 4학년과 5학년 사이에는 의미 있는 차가 있고 실험반 사이에는 차이가 없음은 컴퓨터 인터페이스를 활용하여 수업할 때 5학년보다는 4학년에서 속력에 관한 개념이 더 잘 형성되어 왔음을 나타내는 것이다.

VI. 결론 및 제언

1. 결론

국민학교 학생 4, 5학년을 대상으로 하여, 속력과 운동의 개념 형성에 대하여 컴퓨터 인터페이스를 사용하여 지도할 때의 효과를 알아보기 위하여 실험반은 컴퓨터 인터페이스를 사용하여 수업을 하고 비교반은 전통적인 방법으로 수업한 결과는 다음과 같다.

첫째, 수업전의 아동들은 속력 및 운동에 대한 사전 개념이 거의 없었으며, 속력의 비교에서는 일반적인 빠르기, 교통기관의 속성, 그래프의 길이 등으로 비교하였다. 그러나 실험 수업후에는 시간과 거리 관계에 비교하거나 그래프의 기울기로 비교한 아동수가 비교반보다는 실험반에의 학생이 더 많았다.

둘째, 속력의 비교에서는 4, 5학년 실험반과 비교반의 상호의 차가 없었다.

셋째, 전진과 정지 및 180도 방향 전환하는 운동의 설명에 대한 성취도는 4학년에서는 비교반의 성취율에 비하여 실험반의 아동들이 매우 높은 성취율을 보였다. 5학년은 비교반의 아동들의 성취율이 4개 문항에서 평균 55.75%에 비하여 실험반의 아동들의 성취율은 55.8%로 더 높게 나타났다.

넷째, 속력이 정지 후 가속하는 운동에 대한 성취율은 4학년은 비교반 33%, 실험반 62%로 나타났으나, 5학년에서는 비교반 33%, 실험반 73%로 각각 나타났다.

다섯째, 속력이 정지 간의 속도는 운동에 대하여는 4년 비교반 아동이 25%, 실험반 아동이 62%로 나타났으며, 5학년
온 비교반이 33% 실험반이 64%로 나타났다. 이와 같은 결과는 전통적인 수업 방법보다는 컴퓨터 인터페이스를 사용하여 수업하는 것이 전정과 정지 및 방향 전환이 있는 운동, 속력이 정착 감소하거나 증가하는 운동에 대한 개념의 형성이 더 효과적임을 나타내다고 할 수 있다.

2. 제 연

본 연구의 결과가 컴퓨터 인터페이스의 제한으로 소규모로 실험되어 일반화에 따른 문제점을 포함하고 있으나 현장 실험하다는 측면에서 나타난 문제점 제시하면 다음과 같다.

첫째, 보다 많은 컴퓨터 인터페이스 제작 보급과 학교에 보급된 컴퓨터의 개선이 요구된다. 현재 학교에 보급되어 있는 XT급 컴퓨터를 상위 기종으로의 개선과 컴퓨터 인터페이스 제작 및 보급으로 본 연구와 같은 컴퓨터 사용 학습의 실험 도구로 사용할 수 있는 환경의 조성이 필요하며 아울러 본 연구와 같은 연구가 지속적으로 이루어져야 한다.

둘째, 교육의 최실에서 근무하는 교사들이 컴퓨터를 실험실 도구로서 사용에 대한 지속적인 관심과 연구가 필요하다.

교사들의 컴퓨터에 대한 일반적인 성향은 컴퓨터가 어렵다 또는 다루기가 복잡하다 등의 이유로 그 활용이 매우 저조한 편이다. 이러한 성향에서 탈피하여 컴퓨터를 학습에 직접 활용할 수 있는 방안에 대한 연구가 계속 이루어져야 한다.

셋째, 일선 학교의 관리자들의 컴퓨터에 대한 관심과 이해가 필요하다.

컴퓨터가 미치는 영향이 얼마나 무엇인가를 알면 원하는 것을 얻을 수 있는 장치는 아니다. 원하는 결과를 얻기 위해서는 추중의 노력과 그에 적합한 하드웨어와 소프트웨어가 필요함을 인식하고, 끝없는 개발이 필요함을 인식해야 한다.

참고 문헌

강명희(1990), 한국의 CAI 개발 현황과 그 방향, 컴퓨터 연구, 7, 1호, 포함.

CAI 실험지출 연구목.

교육부 (1990), 국민학교 교육과정 지도서 1년, 국정교과서추계회의.

교육부 (1992), 컴퓨터교육 지도자료, 국정 교과서추계회의.

권제순 (1989), 과학 개념의 한 인지적 모형, 물리교육, 제7권, 제1호.
ABSTRACT

Effect of Using Computer Interface on Learning Speed Concept in the Korean Elementary School

Hyoung-Soo Kim · Jea-Sool Kwon
(Korea National University of Education)

In this study, the researcher tried to find out the effect of using a computer interface in teaching speed concept in the elementary school.

The 4th and 5th pupils were sampled for this study. The school is located in a sub-urban agricultural area in Korea. In the study, the subjects were divided into two groups: experimental and comparison group. From the pretest, two groups did not show any difference in the understanding of speed concept.

The computer interface and the programs to operate the interface and data analysis were developed by researcher. The interface is a modular type and designed ready to connect to microcomputer.

The test items were consisted of (1) comparison of speed, (2) change of motion, (3) acceleration, and (4) deceleration.

As the result, the researcher found the following results:
1. In case of speed comparison, no significant difference was found between experimental and comparison group.
2. In case of change of motion, acceleration, and deceleration, the experimental groups showed higher achievement both in 4th grade and 5th grade. However, the 4th graders showed more learning than the 5th graders.

In conclusion, this study showed that the use of computer interface seemed to be very effective in teaching and learning speed concept in elementary school.