ON GENERALIZED HAMMING WEIGHTS
OF CYCLIC LINEAR CODES GENERATED
BY A WEIGHT 2 CODEWORD

SEON JEONG KIM AND MI JA YOO

1. Introduction and Preliminaries

Let F be a field with two elements. A binary code is simply a linear subspace C of F^n. The elements of a code are called codewords, the integer n is called the length of the code. An $[n,k]$-code means the code of length n, and of dimension k. The weight $w(v)$ of a codeword $v = (v_1, v_2, \ldots, v_n)$ is defined by $w(v) = \text{card}\{i \mid v_i \neq 0\}$. The weight $w(V)$ of a subcode V of a code C is defined by $w(V) = \text{card}\{i \mid v_i \neq 0 \text{ for some } v \in V\}$. In [W], Wei introduced the generalized Hamming weights which are defined as $d_r(C) = \min\{w(V) \mid V \text{ is an } r\text{-dimensional subspace of } C\}$, for $1 \leq r \leq \dim C$. Also it has been shown in [W] that the weight hierarchy of a linear code completely characterizes the performance of the code on a type II wire-tap channel. Here $d_1(C)$ is just the minimum distance of C which is one of important parameters of a code C.

A code C is said to be cyclic if $(v_2, v_3, \ldots, v_n, v_1) \in C$ for every $(v_1, v_2, \ldots, v_n) \in C$. A cyclic code C is said to be generated by a codeword v if C is the smallest cyclic code containing v. In this paper, we find the generalized Hamming weights of a cyclic code C which is generated by single codeword of weight 2.

The following are well-known facts on the generalized Hamming weights.

Received September 10, 1996

Partially supported by KOSEF-GARC and by the Basic Research Institute Program, Ministry of Education, 1995, Project No BSRI-95-1406
Theorem 1.1 (Monotonicity) [W]. Let C be an $[n,k]$-code, then

$$1 \leq d_1(C) < d_2(C) < \cdots < d_k(C) \leq n.$$

Theorem 1.2 (Duality) [W]. Let C be an $[n,k]$-code and C^\perp be the dual code. Then

$$\{d_r(C) \mid 1 \leq r \leq k\} = \{1,2,\ldots, n\} - \{n+1 - d_r(C^\perp) \mid 1 \leq r \leq n-k\}.$$

The author would like to thank the referee for his/her comments and corrections to the previous version of this paper.

2. Main Results

Recall that there is a natural vector space homomorphism

$$\phi : F[x]/(x^n - 1) \rightarrow F^n$$

defined by

$$\phi(a_0 + a_1 x + \cdots + a_{n-1} x^{n-1} + (x^n - 1)) = (a_0, a_1, \ldots, a_{n-1}),$$

and there is a one-to-one correspondence induced by ϕ between the set of ideals of $F[x]/(x^n - 1)$ and the set of cyclic codes in F^n. (See [L] for more detail.) Thus the cyclic code generated by a codeword $(a_0, a_1, \ldots, a_{n-1})$ corresponds to the ideal in $F[x]/(x^n - 1)$ generated by $a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1} + (x^n - 1)$. This ideal is also generated by the coset whose representative element is the greatest common divisor of $a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}$ and $x^n - 1$. Note that $x^n - 1 = x^n + 1$ since we only deal with $F = \{0,1\}$.

Lemma 2.1. Let C be a cyclic code of length n generated by a codeword v of weight 2. Then it corresponds to the ideal in $F[x]/(x^n - 1)$ generated by $(x^l + (x^n - 1)$ for some divisor l of the integer n.

Proof. By definition of cyclic code, we may assume that $v = (a_0, a_1, \ldots, a_{n-1})$, where $a_0 = 1$ and $a_m = 1$. By the above comment, C corresponds to the ideal of $F[x]/(x^n - 1)$ generated by $1 + x^m + (x^n - 1)$, then this ideal is also generated by a coset whose representative is the
On generalized Hamming weights of cyclic linear codes

Let \(n = mq + r \) with \(0 \leq r \leq m - 1 \). Since
\[
x^n - 1 = x^{mq + r} - 1 = (x^{mq} - 1)x^r + (x^r - 1),
\]
by Euclidean Algorithm, we see that \(\gcd(1 + x^m, x^n - 1) = 1 + x^l \), where \(l = \gcd(m, n) \). Thus the proof is complete.

A matrix \(G \) is called a generator matrix of a code \(C \) if its rows form a basis of \(C \). It is a well-known fact that a generator matrix of the cyclic code corresponding to the ideal generated by the coset with representative element \(1 + x^l \), where \(l \) is a divisor of \(n \), is
\[
\begin{pmatrix}
1 & 0 & 0 & \ldots & 1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 & 1 & \ldots & 0 \\
\vdots & & & \ddots & & & \ddots & & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0 & 0 & \ldots & 1
\end{pmatrix}
\]
where the second 1 is in the \(l + 1 \)th place in the first row.

We use the following lemma to prove our main theorem.

Lemma 2.2 For \(l, a \geq 2 \), let \(G \) be a matrix
\[
G = \begin{pmatrix}
I_l & I_l & \ldots & I_l \\
I_{l(a-1)} & \cdots & \cdots & \cdots \\
I_l & I_l & \cdots & I_l
\end{pmatrix}_{l(a-1) \times la},
\]
where \(I_k \) denotes the \(k \times k \) identity matrix. Then for any \(ha - 1 \) (\(1 \leq h \leq l \)) columns of \(G \), there exist linearly independent \(ha - h \) columns.

Proof. Let \(u_i \) denote the \(i \)-th column of \(G \) for \(1 \leq i \leq la \), and let \(B_1 \) and \(B_2 \) be the sets of columns of \(G \) such that
\[
B_1 = \{ u_i \mid 1 \leq i \leq l(a - 1) \}, \quad B_2 = \{ u_i \mid l(a - 1) + 1 \leq i \leq la \}.
\]
Note that each vector in B_1 has only one nonzero coordinate and that in B_2 has exactly $a-1$ nonzero coordinates. Also note that the vectors in each B_i, $i = 1, 2$ are linearly independent.

First, we prove the case for $h = 1$. Let $A = \{ u_{ij} \mid 1 \leq j \leq a - 1 \}$ be a set with $a - 1$ columns of G. If $A \cap B_2 = \emptyset$, then the elements in A are linearly independent. Suppose that $A \cap B_2 \neq \emptyset$, and let

$$b_1 u_{i_1} + b_2 u_{i_2} + \cdots + b_{a-1} u_{i_{a-1}} = 0, \quad b_i \in F,$$

where $u_{i_j} \in B_1$ for $1 \leq j \leq t$, $u_{i_j} \in B_2$ for $t + 1 \leq j \leq a - 1$, and $t \leq a - 2$. Then we get

$$b_1 u_{i_1} + b_2 u_{i_2} + \cdots + b_t u_{i_t} = b_{t+1} u_{i_{t+1}} + \cdots + b_{a-1} u_{i_{a-1}}. \quad (*)$$

Suppose that both sides are not equal to 0. Then the number of nonzero coordinates in the left side is less than or equal to $t \leq a - 2$, and that in the right side is greater than or equal to $a - 1$, which is a contradiction. Thus both sides are equal to 0 and hence all coefficients b_j are zero, or equivalently the elements in A are linearly independent.

Now we prove the cases for $2 \leq h \leq l$. Let $A = \{ u_{ij} \mid 1 \leq j \leq ha - 1 \}$ be a set of columns in G, and A' be the set of vectors in $A \cap B_2$ which are expressed as linear combinations of the vectors in $A \cap B_1$. Note that each vector in B_2 are expressed as a linear combination of the vectors in B_1;

$$u_{i(a-1)+j} = \sum_{t=0}^{a-2} u_{i+t, j} \quad \text{for} \quad 1 \leq j \leq l.$$

Since the sets $\{ u_{j+t} \mid 0 \leq t \leq a - 2 \}$ for $1 \leq j \leq l$ are disjoint, A' has at most $\lfloor \frac{ha-1}{l} \rfloor \leq h - 1$ vectors in $A \cap B_2$. Hence

$$\text{card}(A - A') \geq ha - 1 - (h - 1) = ha - h.$$

Now we shall claim that any $ha - h$ vectors in $A - A'$ are linearly independent. Let $u_{i_1}, u_{i_2}, \cdots, u_{i_{ha-h}}$ be elements in $A - A'$ and suppose that

$$b_1 u_{i_1} + b_2 u_{i_2} + \cdots + b_{ha-h} u_{i_{ha-h}} = 0, \quad b_i \in F,$$
where \(u_j \in B_1 \) for \(1 \leq j \leq t \), \(u_j \in B_2 \) for \(t+1 \leq j \leq ha - h \). For each \(j \) with \(t+1 \leq j \leq ha - h \), there is at least one nonzero coordinate of \(u_j \) where the coordinates of the other vectors in \(A \) are 0. Because such \(u_j \) cannot be expressed as a linear combination of vectors in \(A \cap B_1 \) and all vectors in \(B_2 \) have nonzero coordinates at distinct places. Hence the above equation implies that \(b_j = 0 \) for all \(t+1 \leq j \leq ha - h \). Since all vectors in \(B_1 \) are linearly independent, the other coefficients are also zero. Thus \(u_{t+1}, u_{t+2}, \ldots, u_{ha-h} \) are linearly independent, and we have proved the lemma.

Finally we prove the main theorem.

Theorem 2.3. Let \(C \) be a cyclic code of length \(n \) generated by weight 2 codeword \((a_0, a_1, \ldots, a_{n-1})\) with \(a_i = a_{i+1} = 1 \). Then the dimension of \(C \) is \(l(a-1) \) and the generalized Hamming weights are

\[
d_r(C) = r + \left\lfloor \frac{2^r}{a-1} \right\rfloor \text{ for } 1 \leq r \leq l(a-1),
\]

where \(l = \gcd\{j-i, n\}, \ a = \frac{n}{l} \).

Proof. As in the proof of Lemma 2.1, we may assume that \(a_0 = a_1 = 1 \). Hence a generator matrix of the cyclic code \(C \) is

\[
G = \begin{pmatrix}
1 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 0 & 1 & \ldots & 0 \\
\end{pmatrix}_{l(a-1) \times la}
\]

where the second 1 is in the \(l+1 \)th place in the first row.

We perform the following elementary row operation on the matrix \(G \);

\[
v_i' = v_i + (v_{i+l} + v_{i+2l} + v_{i+3l} + \cdots)
\]

for each \(i = 1, 2, \ldots, l(a-2) \), where \(v_i \) denotes the \(i \)-th row of \(G \). Then
we obtain another generator matrix G' whose rows are v'_i;

$$G' = \begin{pmatrix} I_l & I_l \\ I_{l(a-1)} & \vdots \\ I_l & I_l \end{pmatrix}_{l(a-1) \times la}.$$

Now we use induction on h to prove that for any $h, 0 \leq h \leq l - 1$,

$$d_r(C) = r + (h + 1) \text{ for } h(a - 1) + 1 \leq r \leq (h + 1)(a - 1),$$

which is equivalent to the theorem.

Let $h = 0$. Since the dimension of the code is less than n, clearly the minimum distance $d_1(C) \geq 2$. On the other hand we see $w(v'_1) = 2$, hence $d_1(C) = 2$. For $1 \leq r \leq a - 1$, we have

$$w(D_r(1, l + 1, 2l + 1, \cdots, (r - 1)l + 1)) = r + 1,$$

where the notation $D_r(i_1, \cdots, i_r)$ means r-dimensional subcode generated by the rows $v'_{i_1}, \cdots, v'_{i_r}$ of G'. Hence $d_r(C) \leq r + 1$. Using Theorem 1.1, we conclude that $d_r(C) = r + 1$.

Assume, as an induction hypothesis, that the following holds;

$$d_r(C) = r + (s + 1) \text{ for } s(a - 1) + 1 \leq r \leq (s + 1)(a - 1).$$

For $r = (s + 1)(a - 1) + 1$, by assumption, we have $d_{r-1}(C) = (s + 1)a$. So we have the inequality $d_r(C) \geq (s + 1)a + 1$, here we prove that the equality does not hold. If $d_r(C) = (s + 1)a + 1$, then there exists a subcode D of C such that $w(D) = (s + 1)a + 1$ and $\dim(D) = (s + 1)(a - 1) + 1$.

By definition of $w(D)$, all vectors in D have zero coordinates at $la - ((s + 1)a + 1) = (l - s - 1)a - 1$ places, simultaneously. That is, the following inclusion holds;

$$D \subset \{(c_1, c_2, \cdots, c_{la}) \in C | c_{ij} = 0 \text{ for } j = 1, 2, \cdots, (l-s-1)a-1\},(*)$$
for fixed $c_{ij} = 0$ for $j = 1, 2, \cdots, (l - s - 1) a - 1$. Since the rows of G' form a basis of C, every element of D is also expressed as a linear combination of them. Since

$$a_1 v'_1 + \cdots + a_{l(a-1)} v'_{l(a-1)} = (a_1 \cdots a_{l(a-1)}) \begin{pmatrix} v'_1 \\ \vdots \\ v'_{l(a-1)} \end{pmatrix} = (a \cdot u_1, \cdots, a \cdot u_\ell),$$

where v'_i, u_i are rows and columns of G' respectively, and $a \cdot u_i$ means the usual scalar product of $a = (a_1, \cdots, a_{l(a-1)})$ and u_i, the above inclusion (*) is equivalent to

$$D \subseteq \{a_1 v'_1 + \cdots + a_{l(a-1)} v'_{l(a-1)} | a \cdot u_i = 0 \text{ for } j = 1, 2, \cdots, (l - s - 1) a - 1\}.$$

Hence we obtain

$$\dim D \leq \dim \{a_1 v'_1 + \cdots + a_{l(a-1)} v'_{l(a-1)} | a \cdot u_i = 0 \text{ for } j = 1, 2, \cdots, (l - s - 1) a - 1\} = \dim \{(a_1, \cdots, a_{l(a-1)}) | a \cdot u_i = 0 \text{ for } j = 1, 2, \cdots, (l - s - 1) a - 1\}. $$

By Lemma 2.2, the rank of the matrix $(u_1, \cdots, u_{l(a-1)})$ is at least $(l - s - 1)a - (l - s - 1)$, using the dimension theorem in Linear Algebra, we have

$$\dim D \leq l(a - 1) - ((l - s - 1)a - (l - s - 1))$$

$$= (s + 1)(a - 1),$$

which contradicts the fact that $\dim D = (s + 1)(a - 1) + 1$. Thus $d_r(C) \geq (s + 1)a + 2$.

On the other hand, since

$$w(D_r(\{bl + c | 0 \leq b \leq a - 2, 1 \leq c \leq s + 1\} \cup \{s + 2\}))$$

$$= (s + 1)a + 2,$$

we conclude that $d_r(C) = (s + 1)a + 2$.

For r, $(s + 1)a - s < r \leq (s + 2)a - (s + 2)$, we have $w(D_r(\{bl + c | 0 \leq b \leq a - 2, 1 \leq c \leq s + 1\} \cup \{(s + 2)bl | 0 \leq b \leq r + s - (s + 1)a\}))$

noindent $= r + (s + 2)$. Then, by Theorem 1.1, we have $d_r(C) = r + (s + 2)$. Thus the proof is complete.
References

Department of Mathematics
and Research Institute of Natural Science
Gyeongsang National University
Chinju, 660-701, Korea
E-mail: skim@mongae.gsnu.ac.kr