Incompatibility of Casein-Alginate Mixtures

MoonJung Choi and Jae-Kwan Hwang
Bioproducts Research Center, Yonsei University

Abstract

Phase separation is the typical phenomenon in protein-polysaccharide mixtures because of thermodynamic incompatibility between two macromolecules. Phase separations of casein-alginate-water systems were investigated by using phase diagram under varying pH (6, 8 and 10) and NaCl concentrations (0, 0.25 and 0.5 M). Incompatibility decreased with increasing pH and decreasing NaCl concentration. Molecular weight of alginate did not significantly affect the phase diagram of casein-alginate-water systems. The results strongly suggested that compatibility of casein and alginate involved electrostatic interactions.

Key words: casein, alginate, incompatibility, phase diagram

Fig. 1. Phase diagram of casein-alginate (Kelgin LV)-water system at pH 8 and 0.5 M NaCl. The region under the binodal curve (Ⅲ): one-phase mixed solutions, The region above the binodal curve (Ⅰ): two-phase systems.

1035
분리가 일어날 수 있는 고분자들의 최소 농도이다. 여러 종류의 생고분자들 사이의 혼합성(compatibility)에는 상당한 차이가 있다. Phase separation threshold 값이 클수록, 또는 critical point값이 높을수록, 그리고 binodal curve 아래 부분이 넓을수록, 두 고분자들의 혼합성이 더욱 좋다 중화된다.

본 연구에서는 대표적인 식품단백질과 탄수화물 고분자인 카제인과 알긴산을 이용하여 상도해 현상을 연구하였다. 분자량이 다른 두 종류의 알긴산을 사용하였으며, pH와 염도가 두 고분자들의 혼합성에 미치는 영향을 상도해를 통하여 알아보았다. 상도해는 주어진 조건에서 알긴산이 존재할 때 카제인의 용해도 변화(solubility profile)로 생각할 수 있다. 카제인은 수분흡착(water binding), 빛명, 유효성, 포말성 등의 기능성을 가지고 있으며, 커피크림, 가공육제품, 디저트 등에 사용된다. 식품에서 카제인이 유효적으로 작용하는 경우에 카제인과 비호환적인 탄수화물을 첨가하면 유효성성이 증가한다고 알려져 있으므로, 본 연구는 카제인-알긴산 혼합물의 비호환성과 유효성과의 관계를 이해하는데 기초자료로 사용될 수 있다.

자료 및 방법

자료

카제인은 Sigma Chemical Co. (St. Louis, MO, USA: C-8654)로부터 구입하였다. 분자량이 다른 2종류의 알긴산(Kelgin XL, Kelgin LV)은 Kelco Co. (San Diego, CA, USA)로부터 제공받아 실험에 사용하였다. 방 등은 고유점도 측정에 의한 Mark-Houwink 관계식을 통하여 Kelgin XL과 Kelgin LV의 분자량을 각각 1.64×10⁸, 1.95×10⁹으로 보고하였다.

카제인-알긴산 혼합용액의 제조

NaCl 0, 0.25, 0.5 M을 포함하는 pH 6, 8, 10의 buffer를 이용하여, 7%, 10%의 카제인용액과 2%, 3%의 알긴산 용액을 제조하였다. 카제인 용액과 알긴산 용액을 같은 부피로 섞은 뒤 1시간 동안 교반하여 혼합용액을 제조하였다.

상도해의 작성

카제인-알긴산 혼합용액을 20°C에서 7000 rpm으로 1시간 동안 원심분리하였다(Sorvall RC-5C Plus, DuPont, Newtown, CT, USA). 얇상과 아랫상은 각각 조심스럽게 취하여 단백질과 달걀유도의 농도를 측정하였다. 단백질 농도는 Bio-Rad 단백질 분석기(Bio-Rad Laboratories, Hercules, CA, USA)를 이용한 Bradford 비색법으로 측정하였으며, 달걀유도의 측정에는 phenol-sulphuric acid법으로 이용하였다. x축은 카제인 농도(%)로, y축은 알긴산 농도(%)로 하여 각 pH와 염도, 알긴산 종류에 따른 상도해를 작성하였다. 이를 상도해로부터 critical point와 phase separation threshold를 구하였다.

결과 및 고찰

상도해의 작성

본 연구를 통하여 pH, 염도, 알긴산의 종류에 따라 18개의 상도해를 그릴 수 있다. Fig. 1은 한 예로서 pH 8, NaCl 농도 0.5 M에서 카제인과 알긴산(Kelgin LV) 혼합물의 상도해를 나타낸 것이다. Binodal curve의 바깥쪽 영역의 농도에서는 카제인-알긴산 혼합용액이 완전히 섞인 단일상용액을 형성하며, 안쪽 영역의 농도에서는 카제인-알긴산 혼합용액이 새로운 두상으로 나뉘어진다. 대체적으로 1% 이상의 카제인과 1% 이상의 알긴산을 혼합하였을 경우 이들 두 기여분자들은 영역학적 비호환성으로 인해서 아랫상에는 단백질의 농도가 높고, 반면에 위상에는 달걀유도의 농도가 높은 상태로 상표히 일어난다. 다른 조건에서 도 상도해를 그러간(그림 생략) critical point (CP)와 phase separation threshold (ST)를 구하여 Table 1에 정리하였다. 모든 pH에서 0 M NaCl 농도에서의 CP값이 NaCl 농도가 0.25와 0.5 M에서의 CP값보다 높았 다. pH 8에서 Kelgin XL의 경우를 제외한 모든 혼합물에서, NaCl 농도가 0 M일 때 ST값이 가장 큰 것을 알 수 있다. 이것은 NaCl 농도가 0 M일 경우에 상분

재료 및 방법

자료

카제인은 Sigma Chemical Co. (St. Louis, MO, USA: C-8654)로부터 구입하였다. 분자량이 다른 2종류의 알긴산(Kelgin XL, Kelgin LV)은 Kelco Co. (San Diego, CA, USA)로부터 제공받아 실험에 사용하였다. 방 등은 고유점도 측정에 의한 Mark-Houwink 관계식을 통하여 Kelgin XL과 Kelgin LV의 분자량을 각각 1.64×10⁸, 1.95×10⁹으로 보고하였다.

카제인-알긴산 혼합용액의 제조

NaCl 0, 0.25, 0.5 M을 포함하는 pH 6, 8, 10의 buffer를 이용하여, 7%, 10%의 카제인용액과 2%, 3%의 알긴산 용액을 제조하였다. 카제인 용액과 알긴산 용액을 같은 부피로 섞은 뒤 1시간 동안 교반하여 혼합용액을 제조하였다.

상도해의 작성

카제인-알긴산 혼합용액을 20°C에서 7000 rpm으로 1시간 동안 원심분리하였다(Sorvall RC-5C Plus, DuPont, Newtown, CT, USA). 얇상과 아랫상은 각각 조심스럽게 취하여 단백질과 달걀유도의 농도를 측정하였다. 단백질 농도는 Bio-Rad 단백질 분석기(Bio-Rad Laboratories, Hercules, CA, USA)를 이용한 Bradford 비색법으로 측정하였으며, 달걀유도의 측정에는 phenol-sulphuric acid법으로 이용하였다. x축은 카제인 농도(%)로, y축은 알긴산 농도(%)로 하여 각 pH와 염도, 알긴산 종류에 따른 상도해를 작성하였다. 이를 상도해로부터 critical point와 phase separation threshold를 구하였다.

결과 및 고찰

상도해의 작성

본 연구를 통하여 pH, 염도, 알긴산의 종류에 따라 18개의 상도해를 그릴 수 있다. Fig. 1은 한 예로서 pH 8, NaCl 농도 0.5 M에서 카제인과 알긴산(Kelgin LV) 혼합물의 상도해를 나타낸 것이다. Binodal curve의 바깥쪽 영역의 농도에서는 카제인-알긴산 혼합용액이 완전히 섞인 단일상용액을 형성하며, 안쪽 영역의 농도에서는 카제인-알긴산 혼합용액이 새로운 두상으로 나뉘어진다. 대체적으로 1% 이상의 카제인과 1% 이상의 알긴산을 혼합하였을 경우 이들 두 기여분자들은 영역학적 비호환성으로 인해서 아랫상에는 단백질의 농도가 높고, 반면에 위상에는 달걀유도의 농도가 높은 상태로 상표히 일어난다. 다른 조건에서 도 상도해를 그러간(그림 생략) critical point (CP)와 phase separation threshold (ST)를 구하여 Table 1에 정리하였다. 모든 pH에서 0 M NaCl 농도에서의 CP값이 NaCl 농도가 0.25와 0.5 M에서의 CP값보다 높았 다. pH 8에서 Kelgin XL의 경우를 제외한 모든 혼합물에서, NaCl 농도가 0 M일 때 ST값이 가장 큰 것을 알 수 있다. 이것은 NaCl 농도가 0 M일 경우에 상분
리가 이루어지기까지 더 큰 농도의 카세인과 알긴산을 녹일 수 있다는 것을 의미한다.

Kelgin XL과 Kelgin LV의 ST를 비교해보면 그 차이가 작기는 하나 대체로 Kelgin LV의 경우가 Kelgin XL보다 작은 것을 알 수 있다. 이것은 ST가 분자량이 증가함에 따라 감소한다는 Tolstoguzov⁶의 보고와 일치한다. 또한, Tolstoguzov⁶는 셀라틴은 그 구조가 coil 형태이고 구형 단백질에 비해 excluded volume이 크기 때문에 셀라틴과 단당류 혼합용액의 ST는 2-4%이며, 구형 단백질과 단당류의 경우에는 보통 4%를 넘는다고 설명하였다. 본 연구에서 pH 10,0 M NaCl에서 Kelgin XL을 이용하였을 경우를 제외하고는 ST값이 4%이하로 나타났는데, 이는 카세인의 구조가 coil 형태에 가깝기 때문이다.

Table 1. Critical points and phase separation thresholds of casein-alginates-water systems

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Critical point</th>
<th>Separation threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH</td>
<td>NaCl (M)</td>
</tr>
<tr>
<td>XL</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>XL</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>XL</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>LV</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>LV</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>LV</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
</tr>
</tbody>
</table>

pH에 따른 상도해의 변화

Fig. 2는 pH에 따른 카세인-알긴산(Kelgin XL) 혼합물의 상도해를 나타낸 것이다. 본 실험에서 사용한 pH는 카세인의 pH(4.6)보다 높으므로, 이 조건에서 카세인과 알긴산은 모두 음전하를 띠기 때문에 특정 농도 이상에서 상분리가 일어나는 것은 당연한 현상이다. NaCl 농도가 0 M과 0.25 M에서는 pH 10에서 두 거래분자 사이의 혼합성이 가장 컸다. NaCl 농도가 0 M일 경우에는 카세인의 농도가 낮음수록 즉, 4%에서 pH 10의 경우와 pH 6과 pH 8에서의 혼합성의 차이가 더 크게 나타났다. NaCl 농도가 0.5 M인 경우에는 pH에 따른 혼합성의 차이가 흔들리지 않았다. 분자량이 다른 알긴산(Kelgin LV)을 사용했을 경우에는 상도해의 양상은 Kelgin XL의 경우와 거의 유사하였다.

Grinberg와 Tolstoguzov⁶는 soya bean globulin과 gum arabic을 사용하여 단백질과 음이온 단당류 사이의 비혼합성이 pH가 증가함에 따라 감소하였다고 보고하였다. 같은 전하를 가진 단백질 분자들 사이의 정전기적 반발력은 pH가 증가함에 따라 더욱 커지므로 단백질 분자들이 상의 결합을 방해한다. 또한, Polyakov 등⁶은 카세인 중심체(aggregate)의 분자량이 pH를 6.6에서 11.0으로 증가시킴에 따라 120,000에서 30,000으로 감소한다고 보고했다. 이들의 결과는 pH 10에서 가장 혼합성이 크다는 본 연구의 결과를 뒷받침한다.

염농도에 따른 상도해의 변화

Fig. 3은 NaCl 농도가 카세인-알긴산(Kelgin LV) 혼합물의 상도해에 미치는 영향을 보여준다. pH가 감소되지 않아 NaCl 농도가 0 M일 때 가장 혼합성이 컸으며, pH 10에서 NaCl 농도가 0 M일 때와 다른 NaCl 농도일 때의 차이가 가장 컸다. 대체적으로 NaCl 농도가 0 M에서 0.25 M로 증가함에 따라 혼합성은 크게 감소하였으며, NaCl 농도가 0.25 M와 0.5 M일 때에는 거의 비슷한 혼합성을 나타냈다. Kelgin XL의 경우에도 Kelgin LV와 마찬가지로 NaCl 농도가 0 M일 경우에 가장 혼합성이 컸다.
일반적으로 염농도가 증가함에 따라 단백질들의 정전기적 결합도 증가하는데 이는 단백질 분자의 사이의 정전기적 반발력이 감소하게 되며, 또한 hydrophobic interaction이 증가하기 때문이다. 그러므로 염농도가 높아지면 단백질과 다른 둥이 사이의 정전기적 결합을 빠르기 때문에 비합성은 더욱 현저하게 발생한다고 알려져있다. 염농도를 증가시키면 카페인-알긴산 혼합물의 혼합성이 감소하는 것으로 보아, 카페인과 알긴산은 정전기적 작용을 통해서 복합체를 형성하는 것으로 생각된다. 본 실험에서 사용한 pH에서 염농도가 낮을수록 혼합성이 증가하는 것은 알긴산과 카페인 분자들 사이의 결합력이 높다는 것을 의미한다. 낮은 염농도에서는 음이온을 둔 카페인과 알긴산 사이의 반발력보다는 수소결합과 분자내의 반대 전하를 둔 부분들 사이의 정전기적 결합으로 혼합성이 증가하는 것으로 생각된다.

알긴산의 분자량에 따른 산도의 변화
요 약

수용액상에서 단백질과 다당류 사이의 비혼합성은 일반적인 현상이므로 다양한 조성과 형태의 수용성 거 대분자를 포함하는 식품에서 상분리는 매우 현실적인 현상이다. 본 연구에서는 식품원료로 자주 쓰이는 카
제인과 알긴산을 이용하여, pH (6, 8, 10), NaCl 농도
(0, 0.25, 0.5 M), 알긴산의 분자량 (1.64×10^3, 1.95×
10^4)에 따른 상분리현상에 대하여 연구하였다. 식품에
서 카제인이 유화체로 작용할 때 알긴산의 정격에 따
른 혼합성의 변화는 카제인의 유화간성에 영향을
끼치게 된다. 알긴산의 분자량에 따른 혼합성의 차이
는 크게 나타나지 않았다. pH가 높을수록, 염농도가
낮을수록 카제인-알긴산 혼합물의 비혼합성은 감소하
였다. 이 결과로 보아 카제인과 알긴산 사이의 정전기
적 작용이 혼합성에 관여하여 있는 것으로 생각된다.

감사의 글

본 연구는 1997년도 한국기술교육대학교 연세대학
교의 박사후연수과정 지원사업비에 의해 수행되었으
며, 이에 감사드립니다.

문헌

(1998년 7월 3일 접수)