Changes of Components in Salt-Fermented Northern Sand Lance, *Ammodutes personatus* Sauce during Fermentation

Young Je Cho, Yeong Sun Im, Keun Woo Lee*, Geon Bae Kim* and Yeung Joon Choi**

**Faculty of Food Science and Biotechnology, Food Science and Technology major,
Pukyong National University, Pusan, 608-737, Korea
***Division of Marine Bioscience, Marine Food Manufacturing major, Gyeongsang National University, Tongyeong, 650-160, Korea

To investigate changes of components in salt-fermented northern sand lance, *Ammodutes personatus* sauce during fermentation, various chemical properties were examined at 1~3 months intervals during 18 months fermentation. The moisture content decreased slightly, but the content of VBN and crude protein, total nitrogen, amino nitrogen, degree of hydrolysis, and absorbance at 453 nm increased gradually during fermentation. On the other hand, ash content, pH, and salinity showed almost no change. The contents of total nitrogen, amino nitrogen, and degree of hydrolysis increased sharply until 6~8 months fermentation and showed the gentle increment after that. The Hx and uric acid were the most abundant in ATP related compounds, ranging from 83.1% to 92.9%. After 18 month of fermentation, sauce was rich in free amino acids, such as glutamic acid, alanine, lysine, leucine, isoleucine, valine, aspartic acid in that order.

Key words: salt-fermented northern sand lance sauce, *Ammodutes personatus*, fermentation, degree of hydrolysis, total nitrogen, amino nitrogen, ATP related compounds, free amino acid

서 론

서해안 지역에서 5~6월에 대량 어획되고 있는 가 når, *Ammodutes personatus*는 주로 어촌지역에서 자가 소비용으로 소량씩 역할을 제조되어 왔으나, 비판이 적고 구수하며 독특한 맛과 향을 가지고 있어 백숙에 많이 담긴가지가 알려져서 소비가 정착적으로 증가하여 4~5년 전부터는 가 나라액젓 전용으로 제조하는 증장이 실험기 시작하였으며, 최근에는 많은 종소득업체들이 가 나라액젓 시장에 참여하고 있다 (국립수산진흥원, 1999). 가 나라액젓은 멸치액젓의 숙성조건 (20 ± 2℃, 석면 20~25%, 대형탱크, 1년~1년 6개월)과는 달리 소형 플라스틱 용기에 석면 (25~30%)과 혼합하여 일정 (日光)하 (25 ± 5℃)에서 숙성시킨으로, 멸치액젓보다 분해속도가 빨라서 1년도로 숙성 후 시판된다.

재료 및 방법

1. 재료

본 실험에 사용된 가 나라액젓은 1997년 6월 안면도 근해에서 낚싯대로 어획된 가 나라, *Ammodutes personatus* (체장 74~87 cm, 체중 1.5~2.7 kg)를, 산지에서 가 나라 중량에 대하여 30% (w/w)의 천일염을 첨가한 후 혼합하여 실험실로 운반한 후 플라스틱 숙성용기 (20W×13.5L×12Hcm)에 1kg씩 분배하여 일정 (日光)하 (25 ± 5℃)에서 18개월 동안 숙성시켰다. 1~3개월 간격으로 백숙된 원액을 원심분리 (4,000×g, 30분)하고 양압여과 (buchar funnel φ10mm, pore size; 1 μm)하여 고형물과 혼합물을 제거한 액즙을 −20℃ 냉동에 기르고 보관한 뒤 분석용 시료로 사용하였다. ATP판판물질과 유리아미노산 표준을 미국 Sigma사 제품, 효소법에 사용한 ATP판판물질의 각종 분해효소는 독일 Boehringer사 제품, 그 외의 시약은 평판 재료로 사용하였으며, 실험에 사용한 모든 물은 중류한 닫이온수를 사용하였다.

2. 가수분해도 측정

가수분해도는 Hoyle et al. (1994)에 의한 trichloroacetic acid (TCA)법으로 측정하였다. 즉, 액즙에 paste상으로 만든 시료 5g에 20% TCA 용액 15 ml를 가하여 제단백시키고 원심분리 (3,000×g, 15분)하여 얻은 상층액을 여과 (pore size; 1 μm)한 다음, 상층액의 20% TCA 가용성 질소량과 paste상의 총질소
항장을 semi-micro Kjeldahl법 (AOAC, 1990)으로 측정하여 다음 식으로부터 가수분해도를 계산하였다.

가수분해도 (%) = 20% TCA 가용성 질소합량 / 총질소합량 × 100

3. 실험분석
수분은 상업가열전조법 (AOAC, 1990), 콜드은 건석화회법 (AOAC, 1990), 조리방은 soxhlet 추출법 (AOAC, 1990), 아마 노산성질소함량은 스피즈법 (Spies et al., 1951), VBN 함량은 convey unit을 이용하는 마약환경법 (日本厚生省, 1960), 벤젠함량은 Mohr법 (日本薬物研究所, 1985)으로 각각 측정하였으며, ATP관련물질은 Iwamoto et al. (1987)의 방법에 따라 ATP관련 물질을 추출하여 나카네토는 HPLC법 (Park, 1995)으로, 얇은 철은 Cho et al. (1999a)이 제시한 토양법으로 측정하였고, pH는 pH meter (Orion model 410A, USA)를 사용하여 측정하였다. 석도와 유리아미노산 측정은 경보 (Cho et al., 1999b)와 같은 방법으로 행하였다.

4. 통계분석
모든 실험결과의 통계처리는 Duncan’s multiple range test로 평균간의 유의성, 표준편차 및 각 실험간의 상관성을 SPSS (SPSS Inc., 1997) program을 사용하여 계정하였다.

결과 및 고찰
액체 제조에 사용된 나카네토의 성분조성은 Table 1, 2와 같다. 즉, 수분 함량은 80.7%, 콜드은 함량은 2.0%, 조단백질합량은 12.2%, 조리각 함량은 4.9%, 그리고 pH는 6.62로 나타났으며, 총질소와 아마 노산성질소합량은 각각 1,946 mg/100 g 및 182.78 mg/100 g으로 나타났다. 아마노산성질소합량은 총질소합량의 9.4%이었다. ATP관련물질 중에서 ATP는 검출되지 않았으며, ADP, AMP는 약간으로, 그리고 IMP가 가장 많았으며 4.239 μmol/g이었다. Inosine (HxR)와 hypoxanthine (Hx)도 각각 2.162 μmol/g 및 2.964 μmol/g으로 검출되어, 나카네토의 K값은 54.1% (VBN 함량, 31.5 mg/100 g)로 선도가 많이 작가되었다. 나카네토 중의 ATP관련물질 함량은 약 4.68μmol/g였으며, 수산물의 ATP관련물질 함량은 온도에 따라 얇의 차이는 있지만 대개 10 μmol/g 전후로 알려져 있다 (Hwang et al., 1991; Iwamoto et al., 1988).

'나카네토 중에 나카네토의 가수분해도 (Fig. 1)의 변하는 경로의

| Table 1. The contents of proximate composition, VBN, and pH in northern sand lance |
|--------------------------|-----------------|------------------|-----------------|-----------------|
| Nitrogen (% of dry weight) | 807±62* | 20±0 | 122±0.1 | 49±0.5 | 315±32 | 6.62 |
| *mean ± S.D. (n=5)

Table 2. The contents of total nitrogen, amino nitrogen, and ATP related compounds in northern sand lance

<table>
<thead>
<tr>
<th>Nitrogen (mg/100 g)</th>
<th>Amino nitrogen (mg/100 g)</th>
<th>ATP related compounds (μmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.946±1*</td>
<td>182.8±4.4</td>
<td>N.D. 2</td>
</tr>
</tbody>
</table>

1. mean ± S.D. (n=5)
2. N.D.; not detected

Fig. 1. Changes of hydrolytic degree in salt-fermented northern sand lance paste during fermentation.

15일 후에 44.2%를 원료육 23.2%의 약 2배 정도였으며, 그 이후에도 수성기간에 따라서 증가하여 6개월 후에는 71.5%로 큰 폭으로 증가하였다. 수성기간에 따른 가수분해도는 Y = 10.78(lnx) + 52.03 (여기 Y는 가수분해도, x는 수성기간, 결정계수는 0.997)과 같은 1차 외귀량식에서 따온다. 그리고 수성 6개월 이후에는 가수분해도가 원반히 증가하여 수성 18개월 후에는 83.2%를 나타내었다는데, 이것은 나카네토 중의 자기효소 활성저하 및 호소량의 감소로 분해속도가 현저히 감소된 것으로 사료된다. 나카네토의 일반성분, VBN함량, pH, 및 염분함량의 변화는 Table 3과 같다. 수분함량은 수성 2개월 후에 68.0%이었다가 수성기간에 따른 약간의 감소가 지속되었다가 수성 18개월 후에는 65.3%였고, 조단백질합량과 VBN함량은 수분함량과 반대로 수성 2개월 후에 각각 8.8% 및 78.5 mg/100 ml이었다가 수성기간이 길어지면서 점차 증가하여 수성 18개월 후에는 각각 11.4% 및 215.3 mg/100 ml까지 증가하였다. 그리고 수성기간에 따른 염분의 증가를 없앤 나카네토의 수분함량은 원형 면적의 평균값인 수분함량 68% (국립수산물검사소, 1994)보다 모두 낮았다. 수성기간에 따른 나카네토 중의 조단백질함량은 수성기간에 비해 증가하였는데, 이것은 액체의 풍분에 큰 영향을 미치는 함질소화합물 중
가를 의미하는 것이다. VBN 함량도 숙성기간이 길어지면 따라서 증가하였으며, 최적화함은 pH 및 염분 함량은 숙성 중에 각각 22.1~23.2, 5.01~5.09 및 29.6~29.7 범위로 큰 변화가 없었다. 염분 함량이 형성 백적량의 품질기준인 23% (국립수산물점, 1994)보다 높은 것은 백적량의 전통적인 숙성조건 (20 ± 2℃, 대형병)과는 달리 커아니액젓은 대형 (30%)의 소금과 혼합하여 플라스틱 숙성용기에 넣은 후 일광 (150%) 하에 (25 ± 5℃)에서 숙성시킨으로, 염분 함량이 기준치보다 높은 것이다.

Table 3. Changes of proximate composition, VBN, pH, and salinity in salt-fermented northern sand lance sauce during fermentation

<table>
<thead>
<tr>
<th>Fermentation (month)</th>
<th>Moisture (%)</th>
<th>Ash (%)</th>
<th>Crude Protein (%)</th>
<th>VBN (mg/100ml)</th>
<th>pH</th>
<th>Salinity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>68.0 ± 0.3</td>
<td>23.2 ± 0.5</td>
<td>8.8 ± 0.1</td>
<td>78.5 ± 8.7</td>
<td>5.09</td>
<td>29.7</td>
</tr>
<tr>
<td>4</td>
<td>67.4 ± 0.4</td>
<td>22.1 ± 0.2</td>
<td>9.6 ± 0.2</td>
<td>88.7 ± 3.9</td>
<td>5.06</td>
<td>29.7</td>
</tr>
<tr>
<td>6</td>
<td>66.6 ± 0.4</td>
<td>22.8 ± 0.8</td>
<td>10.1 ± 0.2</td>
<td>119.3 ± 5.1</td>
<td>5.05</td>
<td>29.7</td>
</tr>
<tr>
<td>8</td>
<td>66.6 ± 0.2</td>
<td>22.5 ± 0.3</td>
<td>10.5 ± 0.3</td>
<td>137.7 ± 8.2</td>
<td>5.08</td>
<td>29.7</td>
</tr>
<tr>
<td>10</td>
<td>66.4 ± 0.1</td>
<td>22.6 ± 0.1</td>
<td>10.7 ± 0.1</td>
<td>154.5 ± 6.1</td>
<td>5.05</td>
<td>29.6</td>
</tr>
<tr>
<td>12</td>
<td>65.6 ± 0.2</td>
<td>22.9 ± 0.5</td>
<td>10.9 ± 0.1</td>
<td>166.6 ± 6.9</td>
<td>5.04</td>
<td>29.6</td>
</tr>
<tr>
<td>13</td>
<td>65.8 ± 0.1</td>
<td>22.7 ± 0.3</td>
<td>11.0 ± 0.2</td>
<td>171.2 ± 3.9</td>
<td>5.06</td>
<td>29.6</td>
</tr>
<tr>
<td>15</td>
<td>65.4 ± 0.2</td>
<td>22.1 ± 0.1</td>
<td>11.2 ± 0.1</td>
<td>197.4 ± 2.2</td>
<td>5.02</td>
<td>29.7</td>
</tr>
<tr>
<td>18</td>
<td>65.3 ± 0.3</td>
<td>22.4 ± 0.2</td>
<td>11.4 ± 0.2</td>
<td>215.3 ± 2.6</td>
<td>5.01</td>
<td>29.6</td>
</tr>
</tbody>
</table>

*mean ± S.D. (n = 5)

총질소 및 아미노산질소함량, 그리고 총질소함량에 대한 아미노산질소함량의 비율 변화는 Fig. 2와 같다. 총질소함량은 숙성 8개월 후에 1,681 mg/100 ml으로 큰 폭으로 증가하였으나, 그 이후에는 완전히 증가하여 숙성 18개월 후에는 1,825 mg/100 ml이었다. 이와 같은 실험결과는 원료육의 총질소 함량이 1,946 mg/100 g로, 숙성 18개월 후에는 원료육 총질소 함량의 93.8% 가 함유된 것으로 확인되었다. 숙성기간에 따른 총질소 함량의 증가는 Y = 191.14(lnx) + 1,274.34 (Y는 총질소 함량, x는 숙성기간) (결정계수는 0.9984)와 같은 1차 회귀방정식에 따른다. 참조 (1990)과 Cho et al. (1998)의 백적량의 총질소함량은 숙성기간에 비례하여 증가한다고 보고는 본 실험의 결과를 참고하였고 있다. 본 실험의 숙성 18개월 후의 커나니액젓은 가로축의 연속곡은 93.8%보다 높은 것으로 나타나, 이 중과 숙성조건의 차이가 커나니액젓의 방향으로 본 분석결과는 총질소 함량에 따른 것으로 판단된다. 아미노산질소함량도 총질소함량과 마찬가지로 숙성기간에 따라서 Y = 217.64 (lnx) + 621.19 (Y는 아미노산질소 함량, x는 숙성기간) (결정계수는 0.9983)과 같은 1차 회귀방정식에 따른다. 그리고, 1차 회귀방정식에서 아미노산질소함량의 기울기 (217.64) 총질소함량의 기울기 (191.14)보다 큰 것은, 커나니액젓의 단백질이 대부분으로 환산되어 보다 산소보다 단백질이 분해되어 저산소 경험과 아미노산으로 되는 속도가 가금 더 빨른 의미를 가지는 것으로 판단된다. 총질소 함량에 대한 아미노산질소함량의 비는 총질소함량의 증가폭보다 아미노산질소 함량의 증가폭이 더 빠르므로 아미노산질소함량의 증가폭에 따라서 증가하였다. 총질소 함량에 대한 아미노산질소함량의 비도 숙성기간에 따라서 Y = 6.10(lnx) + 51.24 (Y는 총질소함량에 대한 아미노산질소함량의 비, x는 숙성기간, 결정계수는 0.9925)와 같은 1차 회귀방정식에 따른다.

효소법 (Cho et al., 1999a)로 측정한 숙성 커나니액젓 중의 ATP관련물질의 변화는 Table 4와 같다. ATP~IMP은 극히량, 그리고 HxR도 약간 검출되었다. 한편, 단백질을 기르고 오산이 거의 대부분 (85.1~92.9%)을 차지하였다. IMP 함량은 숙성기간에 따라 감소하는 반면, HxR, Hx, 이산화물, 그리고 ATP관련물질 총량은 숙성기간에 따라 일정하게 증가하는 것으로 나타났는데, 이것은 ATP관련물질들 총량 및 아미노산질소 함량과 마찬가지로 숙성기간에 따라서 역시 일정하게 증가할 수 있다. 아미노산질소 함량은 숙성기간에 따라 증가하여 Y = 217.64 (lnx) + 621.19 (Y는 아미노산질소 함량, x는 숙성기간) (결정계수는 0.9983)과 같은 1차 회귀방정식에 따른다. 그리고, 1차 회귀방정식에서 아미노산질소함량의 기울기 (217.64) 총질소함량의 기울기 (191.14)보다 큰 것은, 커나니액젓의 단백질이 대부분으로 환산되어 보다 산소보다 단백질이 분해되어 저산소 경험과 아미노산으로 되는 속도가 가금 더 빨른 의미를 가지는 것으로 판단된다. 총질소 함량에 대한 아미노산질소함량의 비는 총질소함량의 증가폭보다 아미노산질소 함량의 증가폭이 더 빠르므로 아미노산질소함량의 증가폭에 따라서 증가하였다. 총질소 함량에 대한 아미노산질소함량의 비도 숙성기간에 따라서 Y = 6.10(lnx) + 51.24 (Y는 총질소함량에 대한 아미노산질소함량의 비, x는 숙성기간, 결정계수는 0.9925)와 같은 1차 회귀방정식에 따른다.

![Fig. 2. Changes of total nitrogen (TN), amino nitrogen (AN) content, and AN/TN ratio in salt-fermented northern sand lance sauce during fermentation.](image)

Total nitrogen (Y) Y = 191.14(lnx) + 1,274.34 r² = 0.9984
Amino nitrogen (V) Y = 217.64(lnx) + 621.19 r² = 0.9983
AN/TN3 (□) Y = 6.10(lnx) + 51.24 r² = 0.9925
게수는 0.9999과 같아 나타나, 이들 ATP관련물질 모두 1차 회귀 방정식에 따름으로써, 카나리액젓의 새로운 분석표준분으로 활용이 가능함을 사료하고 있다. 수증기간에 따른 ATP관련물질의 총량의 기울기가 1.41인데 반해 요산량의 기울기는 1.26으로서, 카나리 액젓의 ATP관련물질 총량의 증가는 주로 요산량의 증가에 기인하는 것이며, 요산량의 기울기 (1.26)는 HxR+Hx합량의 기울기 (0.36)보다 높아 숨성기간에 따른 나머지액젓의 요산량의 증 가폭은 Hx이나 Hx의 증가폭보다도 큼을 나타내고 있다. 숨성 8개월 전까지는 HxR+Hx합량이 요산량보다 높았으나, 그 이후에는 요산량이 HxR+Hx합량보다 높게 나타났으며, HxR+Hx합량과 요산량이 교차하는 숨성 8개월 후반은 가수분해도 74.7%, 가용화율 86.4%로 나타나 높은 분해율을 보이는 지점이었고, 틀린적인 점과 달리보이면서도 좋은 것으로 나타나 숨성 최적지점으로서 식료되며, 앞으로 숨성 최적지점에 관한 상세한 연구가 이루어져야 할 것으로 생각된다. Table 4는 나타낸 바와 같이, ATP관련물질 총량에 대한 IMP, HxR, 그리고 Hx의 비는 숨성기간에 따라서 감소하는 반면에, 요산량의 비는 숨성기간에 따라서 증가하는 것으로 나타났다.

Table 4. Changes of the contents of ATP related compounds and the ratios of its components in salt-fermented northern sand lance sauce during fermentation

<table>
<thead>
<tr>
<th>Fermentation (months)</th>
<th>ATP-IMP (μmol/mL)</th>
<th>HxR (μmol/mL)</th>
<th>Hx (μmol/mL)</th>
<th>Uric acid (μmol/mL)</th>
<th>Total (μmol/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.499 (8.4)*</td>
<td>0.933 (8.5)</td>
<td>2.848 (48.0)</td>
<td>2.078 (35.1)</td>
<td>5.928 (100)</td>
</tr>
<tr>
<td>4</td>
<td>0.306 (44.0)</td>
<td>0.541 (78.3)</td>
<td>3.093 (44.4)</td>
<td>2.994 (45.4)</td>
<td>8.090 (100)</td>
</tr>
<tr>
<td>6</td>
<td>0.202 (27.5)</td>
<td>0.563 (75.1)</td>
<td>3.188 (42.7)</td>
<td>3.522 (47.1)</td>
<td>7.757 (100)</td>
</tr>
<tr>
<td>8</td>
<td>0.135 (17.1)</td>
<td>0.578 (77.3)</td>
<td>3.278 (41.6)</td>
<td>3.889 (46.9)</td>
<td>7.890 (100)</td>
</tr>
<tr>
<td>10</td>
<td>0.103 (13.3)</td>
<td>0.591 (72.2)</td>
<td>3.346 (40.6)</td>
<td>4.194 (50.7)</td>
<td>8.194 (100)</td>
</tr>
<tr>
<td>12</td>
<td>0.086 (10.0)</td>
<td>0.601 (71.1)</td>
<td>3.403 (40.3)</td>
<td>4.361 (51.6)</td>
<td>8.451 (100)</td>
</tr>
<tr>
<td>14</td>
<td>0.079 (9.9)</td>
<td>0.605 (71.8)</td>
<td>3.428 (40.0)</td>
<td>4.451 (52.0)</td>
<td>8.563 (100)</td>
</tr>
<tr>
<td>16</td>
<td>0.055 (6.5)</td>
<td>0.613 (76.0)</td>
<td>3.472 (39.6)</td>
<td>4.635 (52.9)</td>
<td>8.676 (100)</td>
</tr>
<tr>
<td>18</td>
<td>0.038 (3.0)</td>
<td>0.623 (66.9)</td>
<td>3.528 (39.1)</td>
<td>4.853 (53.8)</td>
<td>9.023 (100)</td>
</tr>
</tbody>
</table>

*Parenthesis was possessed ratio of each components content to total content

가나리액젓의 숙성 중의 색도변화는 Table 5와 Fig. 4에 나타내었다. Table 5의 같이 숙성기간이 길어짐에 따라서 L, a, a, b값은 약간씩 감소하는 반면, a, a, b값은 증가하는 경향을 나타내었다. 특히, ΔE값은 L, a, a, b값보다는 숙성기간에 따라 향상된 변화를 나타내었지만, 분광도계 453 nm에서 측정한 값의 변화 (Fig. 4)는 차이가 더 적은 것으로 나타났다. 따라서, 색도의 색도를 측정시에는 적색색차계보다는 분광도계 계로 453 nm에서 측정하는 것이 색도의 변화를 조사하는데 더 좋을 것으로 판단된다. 분광도계로 453 nm에서 측정한 값은 술성기간에 따라서 1차 회귀방정식에 따라서 일정하게 증가하는 경향을 보였다.

가나리액젓의 숙성기간에 따른 유리아미노산의 함량과 조성비의 변화는 Table 6과 같다. 가나리육의 총아미노산 함량은 19,741 mg/100 mL로 나타났으며, 그 조성비는 cysteine이 15.50%로 가장 높았고,

![Fig. 3. Changes of HxR+Hx, uric acid, and total ATP related compounds content in salt-fermented northern sand lance sauce during fermentation. Total (○) Y = 1.41(Inx) + 4.95; r2 = 0.9999; Uric acid (▲) Y = 1.26(Inx) + 1.25; r2 = 0.9899; HxR+Hx (■) Y = 0.36(Inx) + 3.10; r2 = 0.9999](image)

**Table 5. Changes of the color values of salt-fermented northern sand lance sauce during fermentation by color difference meter

<table>
<thead>
<tr>
<th>Fermentation (months)</th>
<th>Hunter values (month)</th>
<th>L</th>
<th>a</th>
<th>b</th>
<th>ΔE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>11.77</td>
<td>−1.66</td>
<td>8.49</td>
<td>78.75</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>11.28</td>
<td>−1.05</td>
<td>8.07</td>
<td>79.54</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>11.11</td>
<td>−1.01</td>
<td>7.41</td>
<td>80.00</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10.48</td>
<td>−0.97</td>
<td>6.64</td>
<td>54.66</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>9.72</td>
<td>−0.83</td>
<td>5.31</td>
<td>88.39</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>9.20</td>
<td>−0.76</td>
<td>4.32</td>
<td>91.40</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>8.95</td>
<td>−0.69</td>
<td>3.98</td>
<td>92.12</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>8.69</td>
<td>−0.63</td>
<td>3.76</td>
<td>93.43</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>8.31</td>
<td>−0.50</td>
<td>3.55</td>
<td>94.47</td>
<td></td>
</tr>
</tbody>
</table>

그 다음으로 lysine (10.23%), aspartic acid (10.06%), valine (8.75%), glutamic acid (7.34%), leucine (7.23%) 등의 순이었고, 이들 아미노산들이 총아미노산의 총의 약 60%를 차지하였다. 가나리액젓의 유리아미노산 총량은 술성기간이 길어짐에 따라서 증가하여 술성 18개월 후에는 7,913 mg/100 mL로, 원료육 총아미노산 총량의 약 40% 정도밖에 되지 않았다. 이와 같이, 18개월간 술성기간 가나리액젓의 가용화율은 93.8%보다 상당히 낮은 값을 나타내는 결과는 가나리액젓의 특이 한 이상이 아미노산치 원인이라면 분석되지 않은 지분류합합 및 지분자질질더인 것으로 추정된다. Cho et al. (1998)이 말치액젓의 숙성기간에 따른 총질소합합 및 아미노산
Fig. 4. Changes of color value at the 453 nm in salt-fermented northern sand lance sauce during fermentation.

Table 6. Changes of the contents of amino acids and the ratios of its components in salt-fermented northern sand lance sauce during fermentation (mg/100 ml)

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Raw northern sand lance<sup>a</sup></th>
<th>Fermented (month)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Taurine</td>
<td>240.5 (4.80)<sup>a</sup></td>
<td>257.4 (4.71)</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>1,986 (10.06)</td>
<td>334.6 (6.67)</td>
</tr>
<tr>
<td>Threonine</td>
<td>59 (0.30)</td>
<td>318.2 (6.34)</td>
</tr>
<tr>
<td>Serine</td>
<td>132 (0.67)</td>
<td>265.7 (5.30)</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>1,449 (7.34)</td>
<td>723.8 (14.43)</td>
</tr>
<tr>
<td>Proline</td>
<td>658 (3.33)</td>
<td>169.4 (3.38)</td>
</tr>
<tr>
<td>Glycine</td>
<td>989 (5.01)</td>
<td>137.6 (2.74)</td>
</tr>
<tr>
<td>Alanine</td>
<td>1,168 (5.92)</td>
<td>562.3 (11.21)</td>
</tr>
<tr>
<td>Cystine</td>
<td>3,059 (15.50)</td>
<td>84.0 (1.67)</td>
</tr>
<tr>
<td>Valine</td>
<td>1,728 (8.75)</td>
<td>362.6 (7.23)</td>
</tr>
<tr>
<td>Methionine</td>
<td>180 (0.91)</td>
<td>67.6 (1.35)</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>605 (3.06)</td>
<td>371.7 (7.41)</td>
</tr>
<tr>
<td>Leucine</td>
<td>1,427 (7.23)</td>
<td>507.5 (10.12)</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>555 (2.81)</td>
<td>N.D.<sup>a</sup></td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>491 (2.49)</td>
<td>30.5 (0.61)</td>
</tr>
<tr>
<td>Histidine</td>
<td>707 (3.58)</td>
<td>130.6 (2.60)</td>
</tr>
<tr>
<td>Lysine</td>
<td>2,020 (10.23)</td>
<td>468.0 (9.33)</td>
</tr>
<tr>
<td>Arginine</td>
<td>1,035 (5.24)</td>
<td>240.5 (4.80)</td>
</tr>
<tr>
<td>NH₃</td>
<td>1,493 (7.56)</td>
<td>-</td>
</tr>
</tbody>
</table>

^aTotal amino acid composition (mg/100 g)
^bFree amino acid composition
^cParenthesis was possessed ratio of each amino acid content to total content
^dN.D.: not detected
^e—: not determined
요 약

재래식방법으로 가나리액젓 숙성 중에 성분변화를 실험하기 위하여 안면도산 가나리액젓을 구입하여 일당 (일당) 하 (25 ± 5°C)에서 18개월 동안 숙성시킴으로써 2 ~ 3개월 간격으로 성분변화를 조사하였다. 가나리액젓의 가수분해도는 숙성 6개월까지는 71.5%로 큰 폭으로 증가하였으나, 그 이후에는 변화幅度가 드러나 숙성 18개월 후의 가수분해도는 83.2%이었다. 수분합량은 페어지간에 따라 서서히 감소하는 반면, 조마늘질량, VBN질량은 증가하였으며, 회분합량과 pH 및 염분합량은 숙성기간에 따라 서서히 변화가 있었다. 옥분소량은 숙성 8개월까지는 그 이후에는 가수분해도 증가하여 90%까지 오른 후에는 89.5%를 유지하였다. 비록 소량의 ATP가 존재하지만, ATP는 IMP의 극적 증가로 인하여, HxR, Hexas는 억제 억제되었고, HxR와 Hexas는 억제하는 반면, IMP의 부근은 가수분해도 74.7%가 유지되었다. ATP가 존재하지만, HxR의 증가가 억제되는 것이 이로 인하여, 숙성기간에 따라서 일정하게 증가하였다. 숙성 8개

참고 문헌

SPSS Inc. 1997. SPSS base 7.5 for window, SPSS Inc., 444N. Michigan Avenue, Chicago, IL, 60611.

1999년 7월 13일 접수
1999년 10월 11일 수리